Home » Posts tagged 'Batteries'

Tag Archives: Batteries

#TM1 Technology Minerals Plc – Recyclus appoints Head of Research and Development

Technology Minerals Plc (LSE: TM1), the first listed UK company focused on creating a sustainable circular economy for battery metals, is pleased to announce that its 49% owned battery recycling business, Recyclus Group Ltd (“Recyclus”), has appointed Nick Pickard as Head of Research and Development, effective from 3 January 2023.

 

Nick has more than 30 years’ experience designing, manufacturing and servicing recycling machinery. He has worked with some of the largest mining corporate partners across Europe, Australia, South Africa, India and the UK in the design and build ofshredding, crushing and size reducing mining systems. Examples include Osborn GmbH, Kawasaki Heavy Industries Limited, Krupp Fördertechnik GmbH, Böhringer Group and Meta Nikel Kobalt A.Ş.

More recently, Nick has designed and developed turnkey solutions for a full range of battery recycling systems for both lead-acid and lithium-ion and led the design and build of Recyclus’ lithium-ion battery recycling plant. His knowledge and expertise in this field will help to further develop Recyclus’ recycling machinery and its applications.

During his career, Nick has developed a range of heavy-duty recycling machinery and systems, covering various materials including tyres, mattresses, plastics, commercial waste, glass, ferrous and non-ferrous metals. Previously, Nick designed a semi-mobile weapons destruction system for use in Kosovo following the Balkan conflict. The machine recycles and separates the materials for reuse in agricultural equipment including ploughs, tools and other items to help rebuild war-torn communities.

Robin Brundle, Chairman of Technology Minerals, said: “Nick is a truly talented engineer and innovator, who has already contributed so much to Recyclus through his valuable contributions to the design of our lithium-ion battery shredding plant. I look forward to seeing him apply his inventive mind to further improving our battery shredding plants and keep us at the cutting-edge of battery recycling technology.”

Nick Pickard, incoming of Head of Research and Development at Recyclus, said: “It is great to be joining the company at such an exciting time. Improving battery recycling is a passion for me and I am thrilled to be working with the team here to create new methods, and improve existing ones, to recycle batteries and help support the green transition.”

Enquiries

Technology Minerals Plc

Robin Brundle, Executive Chairman

Alexander Stanbury, Chief Executive Officer

+44 (0)20 4582 3500

Oberon Investments Limited

Nick Lovering, Adam Pollock

+44 (0)20 3179 0535

Arden Partners Plc

Ruari McGirr

+44 (0)207 614 5900

Gracechurch Group

Harry Chathli, Alexis Gore, William Dobinson

+44 (0)20 4582 3500

 

 

Technology Minerals Plc 

 

Technology Minerals is developing the UK’s first listed, sustainable circular economy for battery metals, using cutting-edge technology to recycle, recover, and re-use battery technologies for a renewable energy future. Technology Minerals is focused on extracting raw materials required for Li-ion batteries, whilst solving the ecological issue of spent Li-ion batteries, by recycling them for re-use by battery manufacturers. With the increasing global demand for battery metals to supply electrification, the group will explore, mine, and recycle metals from spent batteries. Further information on Technology Minerals is available atwww.technologyminerals.co.uk  

 

#TM1 Technology Minerals – £4 million convertible bond facility

Technology Minerals Plc (LSE: TM1), the first listed UK company focused on creating a sustainable circular economy for battery metals, is pleased to announce that it has entered into a £4.0 million convertible bond facility (the “Facility”) with Macquarie Bank Limited (“MBL”) and Atlas Capital Markets LLC (“ACM”).

 

Use of Funds

 

The Facility would be used primarily to enable the Company to:

 

·Ramp up of the first phase of operations at the Tipton lead-acid battery recycling plant and prepare to commence industrial-scale processing through an automated plant following approval from the Environmental Agency

·Support operating costs and capital expenditure required to accelerate the Company’s twin-track growth strategy to create a circular economy for battery metals to capture the industrial scale opportunity for recycling Lithium- ion and lead-acid batteries

 

Details of the Proposed Facility

 

Under the Facility, MBL and ACM will provide a £4.0 million convertible bond facility with a coupon of 5% per annum over the SONIA rate, payable quarterly in cash or in shares at the Company’s discretion. The Facility can be drawn in eight tranches of up to £500,000 with each tranche being called at Technology Mineral’s discretion once the previous tranche has been fully converted and subject to certain conditions. MBL and ACM will purchase the convertible bonds at a fixed price equal to 95% of the principal amount. MBL will purchase the first tranche, and each subsequent tranche will be purchased by MBL or ACM pursuant to the terms of the subscription agreement among the parties.

 

MBL and ACM can convert the convertible bonds to Technology Minerals shares (“Shares”) by issuing a conversion notice with the price set at 90% of the 3-day Volume Weighted Average Price of the Shares, where the 3 days may be consecutive or not and are selected by MBL or ACM (as applicable) from the 20 days prior to the issue of a conversion notice by MBL or ACM. The convertible bonds shall have a maturity of two years from issuance.

 

The Company will pay a transaction fee equal to 3% of each tranche (the “Commission”). The Commission is payable in cash, and may be deducted from the amount payable by MBL or ACM (as applicable) to Technology Minerals for each tranche.

 

In addition, warrants amounting to 30% of each tranche will be attached to each tranche of the convertible bonds. The warrants will have a strike price fixed at 30% premium to the Volume Weighted Average Price of the Shares for the 5 consecutive days prior to the issue date of each tranche. The warrants will expire two years after issuance.

 

The convertible bonds would be capable of redemption at any time by the Company with 60 business days’ notice at par plus 10% premium of the principal amount remaining.

 

MBL and ACM would be unable to convert the convertible bonds to Shares where such conversion would mean that it would become interested (as defined in the City Code on Takeovers and Mergers (the “Takeover Code”)) in shares that in aggregate carry more than 29.9 per cent of the of the voting rights of the Technology Minerals.

 

Shareholder Approval

 

The Company will seek shareholder approval should this be required in order to issue the convertible bonds in accordance with the tranches which may be drawn under the Facility.

Alex Stanbury, CEO of Technology Minerals, said: “We are delighted by the confidence Macquarie Bank and Atlas Capital Markets have shown in us and look forward to working with them closely as we turn our focus to scaling operations domestically and overseas. The £4.0m convertible bond facility complements our fundraise in November and strengthens the Company’s position as we look to ramp up our operations at Tipton and progress with our twin-track growth strategy to create a circular economy for battery metals.”

Enquiries

Technology Minerals Plc

Robin Brundle, Executive Chairman

Alexander Stanbury, Chief Executive Officer

+44 (0)20 4582 3500

Oberon Investments Limited

Nick Lovering, Adam Pollock

+44 (0)20 3179 0535

Arden Partners Plc

Ruari McGirr

+44 (0)207 614 5900

Gracechurch Group

Harry Chathli, Alexis Gore, William Dobinson

+44 (0)20 4582 3500

 

 

Technology Minerals Plc 

 

Technology Minerals is developing the UK’s first listed, sustainable circular economy for battery metals, using cutting-edge technology to recycle, recover, and re-use battery technologies for a renewable energy future. Technology Minerals is focused on extracting raw materials required for Li-ion batteries, whilst solving the ecological issue of spent Li-ion batteries, by recycling them for re-use by battery manufacturers. With the increasing global demand for battery metals to supply electrification, the group will explore, mine, and recycle metals from spent batteries. Further information on Technology Minerals is available at www.technologyminerals.co.uk  

 

Macquarie Bank Limited

Macquarie Bank Limited (ABN 46 008 583 542), a corporation constituted with limited liability under the laws of the Commonwealth of Australia and authorised to carry on banking business in, amongst others, the Commonwealth of Australia, and the United Kingdom. Macquarie Bank’s expertise covers asset finance, lending, banking and risk and capital solutions across debt, equity and commodities.

 

Atlas Capital Markets LLC

Atlas Capital Markets (“ACM”) is an investment company based in London, founded in 2012. ACM is managed by a team of experienced professionals that has originated, structured and managed over $10bn in special situation financing and asset-orientated investments globally. ACM takes pride in the relationship fostered with each portfolio company and the added value we bring in expertise and strategic introductions in addition to our invested capital. ACM’s management has decades of experience and has executed numerous deals across the world successfully.

Clean Energy Metals – Dealing with the Supply Squeeze

#TM1- Technology Minerals

 

Clean Energy Metals – Dealing with the Supply Squeeze

Critical window of opportunity to create a circular ecosystem for battery metals

The failure of national governments to reach a major agreement at the COP27 Summit this year underlined the difficulty and urgency in reaching net zero. The lack of progress from the governmental side means that it falls to the private sector to provide meaningful solutions. Resource efficiency, energy, and mobility transition are crucial strategies to mitigate climate change. The focus is on reducing the consumption of resources, especially energy and raw materials.

While raw materials are the basis of our material world, their excessive consumption over recent decades has also contributed significantly to climate change. However, raw materials, and, in this case, especially metals, play a key enabling role for climate protection technologies, such as electro mobility, the hydrogen economy, and solar and wind power plants, and also for digitalisation. It is now vital to make the use of raw materials much more resource-efficient and to use them as purposefully as possible.

Source: https://link.springer.com/article/10.1007/s13563-022-00319-1

Source: https://www.alliedmarketresearch.com/battery-recycling-market

There is overwhelming evidence to show that advanced circular economy systems and sophisticated recycling technologies can build the backbone for the development of a resource efficient and sustainable society. Closed metal cycles are a key part of this equation, securing relevant parts of the raw material supply for high-tech products and reducing CO2 emissions in their production at the same time.

Many mineral-producing countries that supply critical minerals are politically unstable, making them risky to invest in and to rely on as a source. This underscores the importance of developing sources of domestic supply, which offers greater political stability, greater safety for workers, and can provide a pipeline of young talent. These provide a foundation for the sector to build innovative solutions in response to the demands of the green transition.

The sources of many critical minerals for energy use are much less diversified than for hydrocarbons and sometimes concentrated in geographies that are highly problematic from an environmental and social perspective, such the Congo. The Congo accounts for almost 80% of the global supply of cobalt, much of which comes from so called ‘artisanal mining’ with its attendant exploitative labour conditions and environmental degradation.

 

The Delivery Challenge

To deliver on the green revolution and minimise emissions that contribute to climate change, industries will need access to significant quantities of critical minerals.

If you can’t make it or grow it, you have to mine it, so there will be an inevitable growth in the mining of critical raw materials, such as lithium-containing minerals. Source: https://britishlithium.co.uk/lithium-market/

 

Source: https://www.alliedmarketresearch.com/battery-recycling-market

The production of lithium in 2030 will need to be 60 times the market size of 2015, if production of the internal combustion engine becomes a reality within the 2030 to 2035 timescale. Electric vehicles are the primary driver of lithium demand and given lithium’s unique properties of light weight and high energy storage potential, it is highly likely to remain the material of choice in non-stationary batteries, whether in wet electrolyte or solid-state form.

The sustainable supply of the battery metals cobalt, nickel, lithium, manganese, and copper is a decisive factor for the success of electro mobility. Given the current global availability of resources and the imminent tsunamic surge in demand to sustain surging production levels recycling and reuse of batteries represents an increasingly important component of the future raw material supply. An effective circular economy for batteries can only be achieved if—in contrast to the current situation with many consumer goods — spent batteries can be fed into a comprehensive, technically advanced recycling network to re-enter the supply chain.

 

 

Source: https://www.alliedmarketresearch.com/battery-recycling-market

A London listed company Technology Minerals (LON: TM1) is seeking to meet these challenges head on. Billed as the UK’s first stock market listed ‘circular economy’ company, Technology Minerals combines a fast-growing lead acid and lithium-ion battery recycling network through its wholly owned subsidiary Recyclus Group with a series of battery metal mining projects sited strategically around the globe. Technology Minerals Chairman Robin Brundle explains: “The strategy of Technology Minerals is to build out its IP protected battery processing capacity in Europe while evaluating its portfolio of early-stage critical minerals projects. The current European market for Li-ion and lead-acid batteries totals 1.2mte pa of which some 72% are lead-acid and of which the automotive market consumes 70%. Within automotive, Li-ion currently accounts for just 10% but that is set to grow exponentially in line with increased EV penetration.”

The global recycling batteries market size was valued at $11.1 billion in 2020 and is expected to reach to $66.6 billion by 2030.

While EVs don’t emit CO2, lithium-ion batteries are made from raw materials, including lithium, cobalt, and nickel. With the coming supply squeeze, the mining of many of these materials can also raise ethical and environmental concerns.

Currently, there are very few lithium-ion battery recycling centres, due in part to lithium-ion batteries being both costly and difficult to recycle. According to some estimates, the current recycle rate is less than 5%. According to a recent Wired article, “While you can re-use most parts in EVs, the batteries aren’t designed to be recycled or reused.” And if the batteries are disposed into landfill sites, the battery metals can contaminate both water and soil.

Source: https://www.alliedmarketresearch.com/battery-recycling-market

 

The Size of the Problem

  • Global stock of electric vehicles (EVs) could reach 245 million units by 2030, according to the International Energy Agency.
  • While EVs emit less CO2, their batteries are tough to recycle.
  • Ming cobalt, lithium, and nickel can raise ethical and environmental concerns.
  • Creating a circular supply chain by recycling the batteries’ raw materials will be vital in reducing their environmental impact.

Source: https://www.weforum.org/agenda/2021/05/electric-vehicle-battery-recycling-circular-economy/

Lithium-ion batteries are also used for 90% of grid energy storage around the world, especially for wind and solar energy. Initiatives such as the EU’s plan to reduce its dependence on Russian natural gas by two-thirds, which relies in part on accelerated generation of renewable energy, will significantly increase demand for battery storage.

Source: https://www.bcg.com/publications/2022/the-lithium-supply-crunch-doesnt-have-to-stall-electric-cars

The sustainable supply of battery metals such as lithium, cobalt, nickel, manganese, and copper is a decisive factor for the success of electro mobility and clean technologies. The current targets set by governments at home and abroad for the switch to EVs and clean technology leaves recycling and reuse of batteries as the only practical step available to meet demand based on current forecasts for sourcing new battery metal production hubs. This circular economy for batteries can only be realised if—in contrast to the current situation with many consumer goods—there is a global network to collect spent batteries allied to large scale, high-quality recycling facilities.

 

Does the UK offer practical battery metal / clean-tech project opportunities?

Accelerating the shift to zero-emission vehicles is a key element if the 68% reduction in carbon emissions targeted by the Government by 2030 is to be achieved. The UK’s EV market is growing rapidly, with EV registrations increasing by approximately 173% from 2019 to 2020.

Current projections state that approximately 1.4 million EV battery packs will be coming to the end of their “useful life” every year by 2040. This roughly equates to 203,000 tons of batteries for recycling annually (based on a 60% recycling rate) at that point.

The UK currently lacks industrial capacity for lithium-ion battery recycling, resulting in the current costly reliance on mainland Europe when supplying batteries for material recovery after their useful life. With the average value of materials contained in an end-of-life automotive pack in 2018 being £1,200 for Battery Electric Vehicles (BEVs) and £260 for Plug-in Hybrid Electric Vehicles (PHEVs), there is a huge opportunity in the UK to recycle lithium-ion batteries.

Source: https://hvm.catapult.org.uk/news/automotive-battery-recycling-an-opportunity-the-uk-cant-afford-to-miss/#

Technology Minerals Chairman Robin Brundle comments; “The automotive sector is doing its part to pivot to all-electric, but it needs an effective and competitive ecosystem that will be largely self-sustaining, with job creation, skillset expansion and support for COP27 goals, both domestically and abroad, coming to the fore. This way, our automotive industry will continue to advance our extraordinary UK R&D and engineering skillsets so that they are fit for purpose well into the next sustainable decade.  Recycling is forecast to only be able to provide 22% of the supply that’s needed to power the transition. 78% will need to be extracted or brought in from elsewhere and each continent is facing this challenge – with many places creating barriers to export.”

 

Right Under Our Feet?

The UK has a rich history of mining, yet exploration and mine development have been neglected since WWII, with no new metalliferous mine being successfully built for 45 years.

Large-scale mining and modern processing can extract minerals that were not previously economic, safely, and with improved protection of the environment and community. New deposits could be found near old, narrow-veined, high-grade mines or in unexplored areas. Modern environmental controls, surveys, management, and remediation techniques can ensure that mineral production limits environment impact.

Technology Minerals Chairman Robin Brundle points out that the markets are very much aware that recycling alone will not generate sufficient raw materials and believes an ethical mining programme is critical: “We were once a prolific mining nation and those mines are still there – dormant, but in 2022, many appear to be economic once again due to the advancement in technology and commodity prices.”

Some steps have already been taken in this direction. After listing on London’s AIM market, Cornish Lithium #CUSN has assembled a large portfolio of mineral rights in Cornwall and has begun exploration for lithium-rich geothermal fluids.

 

Gigafactory Investment is Coming to the UK

There is progress in at least one area of the electro mobility and clean-tech supply chain: the British government is in talks with several companies to build gigafactories in the UK. Envision AESC has announced a new gigafactory next to its facility in Sunderland, while AMTE Power has also announced plans for a megafactory in Dundee. Further gigafactory and several supply chain announcements are expected in the coming months.
These developments are vital in maintaining a strong and prosperous automotive industry in the UK. On top of the global challenges from the COVID-19 pandemic, the war in Ukraine, and the rising costs of living, the challenges facing the UK automotive industry are very real and specific. 

“We all need not one but several gigafactories in the UK,” said Brundle. “Not having the ability to create batteries at home puts the future of the UK automotive sector in jeopardy—and the 823,000 direct and indirect jobs that go with it.  We need to secure more lithium for the UK and Europe, to create a flexible, sustainable supply chain that could also include developing domestic sources of key battery metals.”

 

How the Macro Backdrop and Supply Squeeze Will Make Recycling Increasingly Important

The Committee for Climate Change has suggested that 50% of new car and van sales would be battery electric or plug-in hybrid by 2035. Bringing forward deadlines for zero emission vehicles means we are now looking at 100% of new cars and vans being zero emission at the tailpipe by 2035.

The supply crunch will not hit immediately. Even though the price of lithium has surged more than tenfold over the past two years, there’s enough capacity to meet anticipated demand until around 2025—and potentially through 2030 if enough recycling operations come online. After that, chronic shortages are expected. Even assuming that all the new lithium-mining projects that the industry currently regards as probable or possible resources go into operation, as well as a significant expansion of lithium-recycling projects, lithium supply in 2030 is expected to fall around 4% short of projected demand, or by around 100,000 metric tons of lithium carbonate equivalent (the processed form of raw lithium). By 2035, that supply gap is projected to be acute—at least 1.1 million metric tons, or 24% less than demand.

 

Source: https://www.bcg.com/publications/2022/the-lithium-supply-crunch-doesnt-have-to-stall-electric-cars

It is more vital than ever that metals are recycled responsibly and effectively. This will:

  • Contribute to the conservation of raw materials, complementing the primary supply of important and partially critical metals for our society.
  • Significantly improve supply security, especially for many technology metals which currently are imported from outside Europe. Many metal imports derive from regions with higher geopolitical risks, hence making the European economy vulnerable to supply disruptions. Exploiting the European “urban mine” built from our end-of-life (EoL) products, infrastructure, and other residue streams reduces import dependence, improves the resilience of crucial value chains, and hence supports economic activities and jobs in Europe. The need for more supply chain resilience has become even more obvious in the context of the Covid-19 pandemic and the Ukraine war.
  • Contribute to cushion volatile metal prices as the additional supply of recycled metals can help to overcome demand–supply imbalances and increases the number of metal sources beyond the primary producers.
  • Reduce the CO2 footprint and overall environmental impact of raw materials supply. If taking place in state-of-the-art recycling facilities, in most cases the energy efficiency (per kg of metal) is better and the impact on water, air, soil, and biosphere is considerably lower than in mining operations. The main reason for this is that the metal concentration in most products is much higher than in geological deposits.
  • Be one pillar of responsible sourcing by providing transparent and clean supply chains.
  • Protect the environment as non-recycling or landfilling of end-of-life products, such as batteries, can emit hazardous substances.

 

How the Technology Minerals #TM1 Blueprint for Lithium-ion and Lead-acid Battery Recycling Will Be a Vital Part of the Supply Chain

The battery recycling market is growing at an accelerated rate, driven by automotive and industrial sectors transitioning to more environmentally friendly and sustainable electric solutions. The UK needs industrial-scale battery recycling technologies. There is currently no major UK capability to recycle lithium-ion batteries. Technology Minerals’ plants in Tipton and Wolverhampton aim to provide a national capability to recycle lead-acid and lithium-ion batteries. As a first-mover in the battery recycling sector, the company expects to open 10 plants over the next six years, with its innovative IP in the lithium-ion sector a driving factor in the expansion strategy.

Technology Minerals has developed a unique frontend process that can safely break open Li-ion batteries which are not suitable for repurposing, to recover the battery mineral rich ‘black mass’ they contain as well as other battery components. This is the only process currently capable of handling all five li-ion battery compositions simultaneously on an industrial scale. The solution is also modular and can be easily built on-site at OEMs, minimising transportation costs.Technology Minerals has also developed a significantly improved process to recover the lead from end-of-life lead-acid batteries as well as recovering the acid for re-use as electrolyte or for the manufacture of fertiliser or gypsum, subject to the preferred economics.

 

Conclusion

As the world races to decarbonise, industry needs a secure source of critical minerals to fuel the transition. Brundle said, “The only ways this can be achieved is creating new mines, opening old mines, and building a secondary source of supply through recycling.”

It is necessary to dramatically escalate new production of battery metals to allow industry to make the green switch. This must be coupled with the implementation of a circular ecosystem so that each mineral mined is used to its full potential. The urgency and scale of the transition means that nothing less than a maximal approach will suffice.

On the strategic level, there are two temporal considerations. Brundle explained, “We have a very narrow window of opportunity so there is a necessity to take action to avert the incoming supply crunch in the short-term, but there is also a longer-term need to create a sustainable, circular ecosystem for battery metals.” Urgent action is required to avoid the immediate shortfall of supply, but there is also a wider structural shift to circularity needed to ensure a decarbonised economy can continue to grow sustainably.

 

#TM1 Technology Minerals – Technology Minerals CEO Alex Stanbury talks on Proactive UK

 

Technology Minerals CEO Alex Stanbury talks to Katie Pilbeam on Proactive UK

Alex talks about next steps for Oacoma and Blackbird projects and exercising an option to acquire the Blackbird Creek Property in the US from DG Resource Management

#TM1 Technology Minerals – ‘Talking Batteries’ Part 2

‘Talking Batteries’ Part 2 by Robin Brundle, Chairman, Technology Minerals plc and Director, Recyclus Group + WMG’s Anwar Sattar, Lead Engineer in Battery Recycling, discussing the 5 key Lithium-ion battery chemistries and the Recyclus technology

Watch here 

Does EV and battery tech really sound the death knell for Oil and Gas?

Future of Oil and Gas

In an era of rising demand and hype for electric vehicles (EV) and battery technology, commodities and ETFs linked to oil and gas have managed to hold their prices. EV stocks like Tesla and Nio have increased by 71% and 100% respectively in the past year. The price of WTI Crude Oil has also increased by 76%, while prices of micro-cap oil stocks like #ECHO Echo Energy and #MSMN Mosman Oil and Gas have increased by 58% and 13% respectively.

This clearly signifies that even after the rise in demand of EVs, commodities like oil and gas are here to stay in the short and long term.

Consumers are under the impression that they could be in an oil-free world by 2030 and most consumers perceive batteries and electricity as the primary source of energy. However, this is highly unlikely and nothing but a series of myths planted in our brains due to effective marketing.

The International Energy Agency (IEA) that analyses trends in energy industry, released its annual World Energy Outlook in November 2019. It looks at potential energy demand and supply under different scenarios to explore different possible futures. The IEA scenario stated a global increase in energy demand by 24% by 2040 of which, oil and natural gas will supply 64% of the world’s energy needs. In accordance with the Paris Climate Agreement, if based on the Sustainable Development Scenario, the oil and natural gas will still supply 47% of the world’s energy by 2040.

More than 15% of oil demand goes into non-combusted use including petrochemicals which is expected to grow to 20% by 2040. Even if the demand for gasoline and other fuels may hypothetically be on the decline, the petrochemical sector, in contrast, still has room to grow. Some major companies have even pledged some $100bn into the petrochemical industry over the next decade.

Developing countries like India have one of the most aggressive renewable power capacity roll-out programmes worldwide. However, its access to affordable fossil fuels remains a priority for its government because its needs for cheap oil, gas and coal continue to rise to meet energy demand that is forecast to more than double by 2040. India’s petroleum minister Dharmendra Pradhan believes the world’s third-largest oil consumer could be the “golden goose” for crude suppliers as it buys more than 80% of its oil needs from foreign crude purchases.

The graph below demonstrates that the forecasted oil demand for 2040 is higher than present day with non-combusted being the driver to increase the demand. While in the primary energy consumption chart, oil is forecasted to maintain its consumption as a primary source by 2040. Whereas the primary consumption of gas is forecasted to rise.

 

(Financial Review, 2020)

 

Texas Oil Wells

In 2018, companies in the Permian Basin – “an ancient, oil-rich seabed that spans West Texas and South Eastern New Mexico — were producing twice as much oil as they had four years earlier” whilst forecasters expected the production to double again by 2023.

The International Energy Agency (IEA) had also predicted that American oil mostly from the Permian will account for 80% of growth in global supply over the next seven years.

Some small companies already had presence in the Permian Basin before these predictions and report in 2018. In 2017, Mosman Oil & Gas (MSMN) acquired several oil and gas leases comprising the Welch Permian Basin Project for a consideration of $310,000. Although the Welch project contributed to a gross profit of $167,000 in the year ended 30 June 2020, recently Mosman sold this Welch Project for $420,000 receiving a premium of 40% from the sale of the project alone.

Mosman is steadily growing its working interests across a number of projects in Texas, including Stanley, Falcon-1, Winters and Galaxie. These have produced a gross profit of over $500,000 in the 2020 year. Stanley also has a 100% success rate with oil production from four wells drilled to date.

Texas wells are providing high returns to oil companies, and with a growing number of projects and acreage, Mosman is well placed for future growth.

South Argentina Oil Wells

Many companies own wells in Argentina and Latin America as it is considered a region rich in resources with 4% of natural gas reserves and 20% of world oil reserves. They are also often undergoing positive development in macro conditions. A strong demand outlook for energy consumption and economic growth coupled with underdeveloped – but lower cost – onshore plays, makes Latin America a favourable region for companies like Echo Energy (ECHO) to deploy its expertise in support of an exploration-led growth strategy.

For the financial year ended 31 December 2020, Santa Cruz Sur at the south-eastern tip of Argentina helped Echo Energy to increase its revenue fourfold to US $11.1mn. This was also due to Echo securing new gas sales contracts at premium rates to the prevailing spot markets in early Q1 2021.

The increase in revenue drove an significant increase in the Echo Energy (ECHO) stock price by 51% from 55p to 83p between December 2020 and January 2021.

Major and Small Suppliers of Oil and Gas

The difference between the barrels of oil supplied can be huge when major suppliers are compared to the small suppliers. But all that glitters is not gold. High supply and production would require a higher demand to be profitable, if the demand of oil stagnates in the future it will affect the major suppliers before the small suppliers.

The big 10 companies accounted for 28% of global oil production in 2020 as shown below.

When this is compared to small oil producers like Echo Energy and Mosman Oil and Gas,  Echo Energy produced a cumulative of 94,000 barrels of oil in Santa Cruz Sur in South Argentina. While Mosman Oil and Gas produced a gross of 90,000 barrels of oil in the year ended June 2020. Based on available data, the production of Echo and Mosman combined is 0.2% of the global oil demand.

This is effective during times of recession or when the global demand is low as during unprecedented times a major oil supplier to generate profits and work at full capacity would need to sell between 5-12% of oil demand while small suppliers of oil would need to fulfil a negligible percentage of global demand of oil to turn profitable. This is due to high storing and inventory costs for major oil suppliers as well as higher fixed costs due to bigger operations.

Conclusion

Therefore, even though the oil demand is perceived to be lower in the future due to alternative resources, the demand doesn’t seem to be in decline due to oil having uses other than fuel and gas for cars and transportation like non-combusted petrochemicals. Even if the demand for oil is on the decline it would not affect small oil suppliers; as working at full capacity they fulfil just a small percentage of global oil demand and still manage to make hefty profits.

These among many, are the reasons keeping the oil prices buoyant and in the mix, not only for the present day but also for the future.

World’s insatiable appetite for batteries sparks multi billion pound lithium mining boom in Australia! Via abcnews

Growing demand for batteries for electric cars and power storage is driving increased investment in lithium mining in Western Australia. WA is currently supplying more than 40 per cent of the world’s lithium and a new mine in the Pilbara is the latest in a string of investments in the industry. The West Australian Government is now encouraging industry to build a battery factory in the state to capitalise on the boom.

I would like to receive Brand Communications updates and news...
Free Stock Updates & News
I agree to have my personal information transfered to MailChimp ( more information )
Join over 3.000 visitors who are receiving our newsletter and learn how to optimize your blog for search engines, find free traffic, and monetize your website.
We hate spam. Your email address will not be sold or shared with anyone else.