Home » Posts tagged 'lake way'

Tag Archives: lake way

Salt Lake Potash Ltd (SO4) – Significant High-Grade SOP Resource Delineated at Lake Way

The version of this announcement including diagrams can be viewed at www.saltlakepotash.com.au/asx-announcements/

 

Highlights:

·         Initial Mineral Resource Estimate for the whole of Lake Way contains 73 million tonnes of SOP, including:

o  Measured Resource – Lake Way Playa 6.9Mt @ 15.4kg/m3

o  Measured Resource – Williamson Pit 32Kt @ 25.5kg/m3

o  Indicated Resource – Paleochannel 3.7Mt @ 13.6kg/m3

o  Inferred Resource – Lake Way Playa & Paleovalley Sediment 62Mt @ 15.2kg/m3

·       Lake Way confirmed as very high-grade with consistent brine chemistry both laterally and at depth, with an average grade of 14.5kg of SOP per cubic metre of brine across the Lake Way tenements (Measured and Indicated)

·       The Company has successfully delineated a Paleochannel in excess of 30km in length along the eastern boundary of Lake Way, which supports the ability and optionality to produce brine from two separate sources (lake playa and paleochannel)

Test pumping of historical bores at Lake Way has provided important data that supports efficient production by pumping from the paleochannel resource

·      The Mineral Resource Estimate for the ‘whole of lake’ will enable the Company to finalise technical studies for a larger production scenario with an anticipated release date towards the end of Q2 2019

Salt Lake Potash Limited (the Company or Salt Lake Potash) (ASX/AIM:SO4) is pleased to advise of a significant extension of the Mineral Resource Estimate at Lake Way following completion of an exploration program across the ‘whole of the lake’. The estimated total Mineral Resource Estimate at Lake Way has increased to 73 million tonnes (Mt) of SOP calculated using Total Porosity and 8.2Mt of SOP calculated using Drainable Porosity. Thirdly, the model is now being further refined by establishing a site evaporation trial, where a scaled down version of an evaporation pond system is established on site and brine is evaporated under actual field conditions. Both brine chemistry and salt production are closely monitored.

Table 1: Resource Table

Classification

Bulk Volume

(Million m3)

Porosity (%)

Brine Volume

(Million m3)

Average SOP (K2SO4) Concentration (kg/m3)

SOP Tonnage – Total Porosity

(Mt)

SOP Tonnage – Drainable Porosity1

(Mt)

Measured (Lake)

1,060

43

456

15.4

6.9

1.8

Measured (Williamson Pit)

1.26

25.5

0.03

0.03

Indicated

(Paleochannel)

686

40

274

13.6

3.7

1.4

Inferred

10,216

40

4,096

15.2

62.2

5.0

Total

11,963

4,826

72.83

8.2

1.     An average Drainable Porosity ranging from 3-15% has been applied

 

Salt Lake Potash’s Chief Executive Officer, Mr Tony Swiericzuk said:

“It is extremely pleasing to present the Lake Way Mineral Resource Estimate for the ‘whole of lake” that confirms the significant size and very high-grade resource at Lake Way.

It reinforces our current review process to consider a larger scale scenario at Lake Way and we anticipate releasing the technical results of the larger scale scenario towards  the end of Q2 2019.”

Lake Way Project

Salt Lake Potash is focussed on the rapid development of the Lake Way Project, being a high grade salt-lake brine Sulphate of Potash (SOP) operation. Lake Way’s location and logistical advantages make it the ideal Lake for the Company’s first SOP operation.

Lake Way is located in the Northern Goldfields Region of Western Australia, less than 15km south of Wiluna. The surface area of the Lake is over 270km2. The northern end of the Lake is largely covered by a number of Mining Leases, held by Blackham Resources Limited (Blackham), the owner of the Wiluna Gold Mine. The Company’s Memorandum of Understanding with Blackham (see ASX Announcement dated 12 March 2018) allows for an expedited path to development at Lake Way.

Introduction

The maiden Mineral Resource Estimate reported in July 2018 was limited to the area within the Blackham Tenement boundary. Subsequent to this, the Company has undertaken an extensive exploration program covering the remaining areas of Lake Way including the delineation of the Paleochannel which runs along the eastern boundary of the Lake Way Project. 

Salt Lake Potash has now finalised the exploration program that has supported a ‘whole of lake’ Mineral Resource Estimate, covering the playa surface and the Paleochannel aquifers of Lake Way.

The Mineral Resource Estimate for the ‘whole of lake’ will enable Salt Lake Potash to finalise technical studies for a larger production scenario with an anticipated release date towards the end of Q2 2019. 

Mineral Resource Estimate

The Company engaged an independent hydrogeological consultant with substantial salt lake brine expertise, Groundwater Science Pty Ltd, to complete the Mineral Resource Estimate for the Lake Way Project. 

The Lake Way Mineral Resource Estimate describes a brine hosted resource.  The minerals are dissolved in brine, and the brine is contained within pore spaces of the host sediment.  A small portion of the resource is contained in the Williamson  Pit Lake.

The Mineral Resource Estimate of 73Mt is hosted within approximately 15 billion cubic metres of sediment ranging in thickness from a few metres to over 100m, beneath 189km2 of Playa Lake surface including the paleochannel basal sand unit of 20m thickness and 30km length.

The Mineral Resource Estimate for Lake Way is divided into resource classifications that are controlled by the host geological units:

·      Lake Bed Sediment

·      Paleovalley Sediment

·      Paleochannel Basal Sands

The mineral resource estimate is summarised in the Tables below.  An overview of each resource classification is provided in the subsequent paragraphs.  Details of the estimation methodology are provided in the body of this report.

The estimated SOP tonnage represents the SOP within the in-situ contained brine with no recovery factor applied. The amount of contained brine which can be extracted depends on many factors including the permeability of the sediments, the drainable porosity, and the recharge dynamics of the aquifers.

Table 2: Measured Resource

Total Volume

Brine Concentration

Mineral Tonnage Calculated from Total Porosity

Mineral Tonnage Calculated from Drainable Porosity

K

Mg

SO4

Total Porosity

Brine Volume

SOP Tonnage

Drainable Porosity1

Brine Volume

SOP Tonnage

(Mm3)

(kg/m3)

(kg/m3)

(Kg/m3)

(Mm3)

(Mt)

(Mm3)

(Mt)

North Lakebed

(0.4-8.0 m)

1,060

6.8

8.0

27.6

0.42

445

6.8

0.11

117

1.8

Williamson Pit

1.26

11.4

14.7

48.0

1.26

0.03

Total

6.8

1.83

Table 3: Indicated Resource

Total Volume

Brine Concentration

Mineral Tonnage Calculated from Total Porosity

Mineral Tonnage Calculated from Drainable Porosity

K

Mg

SO4

Total Porosity

Brine Volume

SOP Tonnage

Drainable Porosity

Brine Volume

SOP Tonnage

(Mm3)

(kg/m3)

(kg/m3)

(Kg/m3)

(Mm3)

(Mt)

(Mm3)

(Mt)

Basal Sands

(Paleochannel)

686

6.1

8.2

25.0

0.40

274

3.7

15

103

1.4

Table 4: Inferred Resource

Total Volume

Brine Concentration

Mineral Tonnage Calculated from Total Porosity

Mineral Tonnage Calculated from Drainable Porosity

K

Mg

SO4

Total Porosity

Brine Volume

SOP Tonnage

Drainable Porosity

Brine Volume

SOP Tonnage

(Mm3)

(kg/m3)

(kg/m3)

(Kg/m3)

(Mm3)

(Mt)

(Mm3)

(Mt)

South Lakebed

(0.4-8.0 m)

316

6.8

8.0

27.6

0.42

133

2.0

0.11

35

0.5

Lakebed

(8m to Base)

9,900

6.8

8.0

27.6

0.40

3,960

60.0

0.03

297

4.5

Total

62.0

5.0

1.      The Drainable Porosity does not include the significant resource potentially available through the recharge cycle. Refer Appendix 1.

The northern section of Mineral Resource Estimate (including the Blackham tenements) has been classified into a Measured category for the upper 8m of lakebed sediments. The resources contained within the lakebed sediments below 8m, and the southern section of the lake at all depths, are all classified in the Inferred category. The Paleochannel running along the eastern boundary of the lake has been classified in the Indicated category.

The Company will continue the exploration program as it looks to increase the resource definition in the southern section of the lake and ultimately convert the Mineral Resource Estimate into Ore Reserves following further technical studies.

2018 Resource Estimate for Lake Way

In July 2018, the Company completed a scoping study for a 50,000tpa demonstration plant supported by an indicated resource for the 55.4km2 area of the Blackham tenements on Lake Way totaling 1.9Mt of SOP with an excellent brine chemistry of 15.49Kg/m3 K2SO4 and a measured resource from the Williamson pit of 32kt with a highly concentrated chemistry of 25.5Kg/m3 K2SO4.

The Resource was calculated on the shallow (6m average depth) Playa Lake Sediment only. This resource has now been extended to 8m depth and to include 87km2 of Salt Lake Potash’s tenement covering the open playa area of Lake Way and upgraded to measured.  The Williamson Pit resource remains unchanged.

Williamson Pit – Measured Resource Estimate

The Measured Resource dissolved in the Williamson Pit Lake Comprises 32Kt SOP dissolved in 1.26Mm3 brine at an average grade of 24.4kg/m3 SOP.

Lakebed Sediment (North) – Measured Resource Estimate

The Measured Resource is hosted in the Lake Bed Sediments in the northern part of the lake where data density is sufficient to support the Measured Resource classification.

The resource comprises 6.9Mt SOP hosted in the total porosity of the sediment which includes 1.8Mt SOP within the drainable porosity of the sediment. 

The resource is contained within the top 8m of sediment, which can reasonably be drained by pumping from trenches and occupies an area of 139.5km2 of the Lake Way playa surface.  Islands and a zone of dewatered sediment have been removed from the area used to calculate the resource.

Brine chemistry was defined by assay of brine samples taken from 9 hand dug pits, 13 Auger drillholes, and 49 excavated test pits.  The average brine grade is 15.2kg/m3 SOP.

Total Porosity was defined by laboratory determination of 16 intact samples obtained by hollow core auger drilling and 24 Shelby Tubes advanced during excavation of test pits. Total porosity averages 42%.

Drainable porosity was defined by laboratory determination of 24 intact samples obtained by hollow core auger drilling and Shelby Tubes advanced during excavation of test pits.  Extended duration pumping trials were undertaken to provide field estimates of drainable porosity to validate the laboratory determination.  Drainable porosity by all methods averaged 11%.

Lakebed Sediment (South) – Inferred Resource Estimate

The Inferred Resource is hosted in the Lake Bed Sediments in the southern part of the lake where data density is insufficient to support a higher classification.  In this area continuity of brine grade and sediment porosity is assumed which constrains the resource classification to Inferred. 

The resource comprises 2.1Mt SOP hosted in the total porosity of the sediment which includes 0.5Mt SOP within the drainable porosity of the sediment. 

The resource is contained within the top 8m of sediment, which can reasonably be drained by pumping from trenches and occupies the 41.6km2 area of the Lake Way playa surface.  Islands on the Playa surface have been removed from the area used to calculate the resource.

Brine chemistry and sediment porosity was assumed to be equivalent to the average of the northern part of the lake.

Paleochannel Basal Sand – Indicated Resource Estimate

The Indicated Resource is hosted in the Basal Sands that infill the deepest 20m of the paleochannel. 

The resource comprises 3.7Mt SOP hosted in the total porosity of the sediment which includes 1.4Mt SOP hosted in the drainable porosity of the sediment. 

The geometry and volume of the basal sand was defined by detailed gravity and passive seismic geophysical survey, validated against the extensive historical drilling data set. The total sediment volume is 686 million cubic meters.

Total porosity and drainable porosity were benchmarked against comparable paleochannel sands and a value of 40% total porosity and 15% drainable porosity was applied. 

Brine chemistry was defined by assay of multiple brine samples taken from two historic test bores that were pumped for 24 hours. The average brine grade is 13.6kg/m3 SOP.

Paleovalley Sediment – Inferred Resource Estimate

The Inferred Resource is hosted in the predominately silt and clay sediments that infill the paleovalley from the base of the Lake Bed Sediments to basement or the Basal Sands. 

The resource comprises 60Mt SOP hosted in the total porosity of the sediment which includes 4.5Mt SOP within the drainable porosity of the sediment.  The proportion of the brine held in drainable porosity is much lower in this unit due to the fine-grained lithology.

The geometry and volume of the Paleovalley Sediment was defined by detailed gravity and passive seismic geophysical survey, validated against the extensive historical drilling data set. The total sediment volume is 9,900 million cubic meters.

Brine chemistry is assumed to be continuous from the surface of the playa to the base of the Paleovalley Sediment based on comparable assay results from the lake bed sediments and the paleochannel sands.

Porosity was estimated against comparable sediments, and 40% total porosity and 3% drainable porosity has been applied in the resource estimation.

Future Work

The Mineral Resource Estimate for the ‘whole of lake’ will enable Salt Lake Potash to finalise technical studies for a larger production scenario with an anticipated release date towards the end of Q2 2019.

The Company will continue the exploration program at Lake Way as it looks to increase the resource definition in the southern section of the lake and ultimately convert the Mineral Resource Estimate into Ore Reserves following further technical studies.

Construction of the first phase of the Lake Way Evaporation Ponds is progressing well. The first phase will enable de-watering of the Williamson Pit. The utilisation of the Williamson Pit brine will accelerate Salt Lake Potash’s pathway to first production of SOP at Lake Way.

For further information please visit www.saltlakepotash.com.au or contact:

 

Tony Swiericzuk/Clint McGhie

Salt Lake Potash Limited

Tel: +61 8 6559 5800

Jo Battershill

Salt Lake Potash Limited

Tel: +44 (0) 20 7478 3900

Colin Aaronson/Richard Tonthat/Ben Roberts

Grant Thornton UK LLP (Nominated Adviser)

Tel: +44 (0) 20 7383 5100

Derrick Lee/Beth McKiernan

Cenkos Securities plc (Joint Broker)

Tel: +44 (0) 131 220 6939

Jerry Keen/Toby Gibbs

Shore Capital (Joint broker)

Tel: +44 (0) 20 7468 7967

 

 

Summary of Resource Estimate and Reporting Criteria

This ASX Announcement has been prepared in compliance with JORC Code 2012 Edition and the ASX Listing Rules.  The following is a summary of the pertinent information used in the Mineral Resource Estimate with full details provided in the JORC Code Table 1 included as Appendix 4.

Geology and Geological Interpretation

The investigation area is in the Northern Goldfields Province on the Archaean Yilgarn Craton.

The province is characterised by granite-greenstone rocks that exhibit a prominent northwest tectonic trend and low to medium-grade metamorphism. The Archaean rocks are intruded by east-west dolerite dykes of Proterozoic age, and in the eastern area there are small, flat-lying outliers of Proterozoic and Permian sedimentary rocks. The basement rocks are generally poorly exposed owing to low relief, extensive superficial cover, and widespread deep weathering.  A key characteristic of the goldfields is the occurrence of paleochannel aquifers. These palaeodrainages are incised into the Archean basement and in-filled with a mixed Tertiary and Quaternary sedimentary sequence.

The paleochannel sediments of Lake Way are characterised by a mixed sedimentary sequence including sand, silts and clays of lacustrine, aeolian, fluvial and colluvial depositional origins. These near-surface deposits also include chemically-derived sediments of calcrete, silcrete and ferricrete. Beneath eastern parts of the playa, there is a deep paleochannel that is infilled with Tertiary-aged palaeochannel clay and basal sands in the deepest portion.

The Sediments infilling the paleochannel are described below:

Lake Bed Sediment

Recent (Cainozoic), unconsolidated silt, sand and clay sediment containing variable abundance of evaporite minerals, particularly gypsum. The unit is ubiquitous across the salt lake surface. The thickness of the unit ranges from approximately 3 to 20m. This unit hosts the Measured and Inferred Resource.

The upper part of the unit comprises unconsolidated, gypsiferous sand and silt from surface to around 1.5m depth. The unit is widespread, homogeneous and continuous with the thickest parts in the centre and southern portion of the lake. This is underlain by well sorted, lacustrine silt and clay.

Palaeovalley Sediment

The Paleovalley sediment consists of Tertiary clay and silt that overlies basement or the Basal Sand.

Paleochannel Basal Sand

Tertiary, unconsolidated fine, medium to coarse grained sand interbedded with silt, clay and some lignite horizons. 

Hydrological Setting

 

Surface Water

Lake Way receives episodic surface water inflow from West and East Creeks which lie to the north of the playa and other smaller creek lines to the west. The Playa is a terminal feature in the surface water system, i.e. there are no drainage lines that exit the playa.

Surface water recharge is a significant part of the water balance for salt-lake playa brine potash operations as described in Turk’s (1972) description of the Bonneville Salt Flats (now Wendover Potash Mine) and EPM’s (2013) proposed potash operation at Sevier Lake.

The morphology of the playa shape and surface is consistent with the classification system described by Bowler (1986).  The northern part of the Playa exhibits morphology typical of significant surface water influence and periodic inundation (smooth playa edges, one island). The southern part of the playa exhibits morphology consistent with a groundwater dominated playa with rare inundation (irregular shoreline, numerous islands). The frequency of inundation across the lake may be influenced by prevailing south-easterly winds driving water to the north eastern end of the Lake.

The Lake Way catchment area is 3,767km2. The catchment was defined using Geoscience Australia’s 1 second DEM and MapInfo Discover Hydrology Package.

A runoff model was developed for the Lake Way Catchment using the WaterCress software package (Groundwater Science 2018b). The model was constructed and calibrated to the adjacent and analogous Gascoyne River catchment, and then run using the catchment area defined for Lake Way and historic rainfall data from the Wiluna BOM station from 1907 to 2017.

The average annual rainfall for the Lake Way Catchment is 260mm/year.  The run-off model estimates that on average 3.9% of rainfall runs off to the Lake. Most of the heavy rainfall occurs in December to March and as such 71% of significant runoff events (runoff depth >5mm) occur during this period. The average annual modelled run-off to the Playa is 38GL/year but this is highly variable and ranges from zero in years 1910 and 1936, up to a maximum of 314GL in 1936 and more recently 283GL in 1995.

Groundwater

The Lake is inferred to be a terminal groundwater sink on the basis of the large area of the lake and the shallow water table observed at all sites beneath the lake which will facilitate evaporative loss. Groundwater beneath the lake is hypersaline and comprises the brine potash resource.

The drilling undertaken at Lake Way has identified 2 aquifer units:

·      Cainozoic Playa Lake Sediments exhibit variable lithology comprising sand, silt and clay. Permeability is higher in the surface gypsiferous sands from which brine flows freely.  The lake sediments beneath the surface sands are higher in clay content and rely on flow from macro and micro remnant structures.

·      Tertiary Palaeochannel basal sands comprising fine to coarse grained, well sorted sand. The extent of the paleochannel has been defined through the passive seismic geophysical survey and can be seen to be several hundred metres wide throughout. 

Geological Interpretation

 

The geological model of the deposit was developed in Leapfrog by Zephyr Professional Ltd.

The basement topography model is based on interpretation of the passive seismic survey data tied to the historic drilling data set. The Basal Sand is then modelled to infill the channel to a depth of 20m above the channel thalweg.

The geological model provides the volumes that were then used to estimate dissolved mineral tonnage contained in the pore space of the host rock.

Drilling and Sampling Techniques

Auger Drilling

Thirteen auger holes were drilled to a maximum depth of 7m.  The hollow stem auger method was applied, this enables a continuous core to be captured.

Drilling the top 1.5m was achieved with little difficulty however, as the hole got deeper the denser, stiffer clays made progress difficult leading to refusal at around 5m for most holes.

Once the holes were drilled the bores were completed with slotted PVC to just below the water table, gravel packed to 0.5mbgl and a bentonite seal to the surface.  Before the installation of the Bentonite seal each piezometer was developed using a hand held Wattera development system. 

Excavator Test Pits

Test pits were dug using an amphibious digger to a depth of approximately 4m or refusal.

Excavator Test Trenches

Test trenches were dug using an amphibious digger to a depth of approximately 4m or refusal.  The trenches were nominally 100m long and the slopes were battered for stability.

Historic Production Bores

Two historic investigation bores were used to obtain brine samples and test the hydraulic parameters of the aquifer. These bores were installed by AGC Woodward Clyde in 1992 on behalf of WMC Engineering to identify a mine water supply.

Prior to testing, the integrity of the bores was checked by downhole camera survey of the bore holes.

Historic Drilling

An extensive historic drillhole dataset was obtained from WAMEX.  Drill logs were re-interpreted to provide stratigraphic intersections to inform the geological model and provide control to the geophysical model described below.

Geophysics

A Horizontal to Vertical Spectral Ratio (HVSR) passive seismic survey was completed over 20 survey transects on the Salt Lake Potash tenements. The aim of the survey was to determine depth to bedrock, identify paleochannels and estimate their volumes.

The final HVSR passive seismic data has been processed and velocity analysis completed with amplitude-depth cross-sections generated for each survey transect. The data highlighted an interpreted fresh bedrock interface below Lake Way as an acoustic impedance contrast layer, as well as highlighting shallower layering within the unconsolidated sedimentary cover deposits (paleochannel sands). This is interpreted as the upper and lower extents of the paleochannel sands.

Brine samples

Brine samples were obtained from all test pits, test trenches, water bores and auger holes completed as piezometers.  In all instances the brine sample represents a bulk average sample of the open interval of each drillhole and excavation.

Geological Samples

Geological samples were taken from each drilling and excavation method and geologically logged.

Porosity Samples

Porosity samples were obtained from test pit excavation by pushing Shelby Tubes into the sediment and nominally 1m depth intervals.  These samples were sealed to prevent moisture loss and submitted to the laboratory for total and drainable porosity determination.

Hollow core auger samples were taken at nominally 1m depth intervals.  These samples were sealed to prevent moisture loss and submitted to the laboratory for total and drainable porosity determination.

Hydraulic Testing

Trench Pumping Trials

Test Trenches were pumped for between 5 and 90 days. The brine drawdown around the trench was measured using piezometer areas extending 100m from the trench.  This data was used to determine drainable porosity and aquifer hydraulic conductivity.

Brine samples were taken at regular intervals during pumping to assess the stability of brine composition over time.

Test Pit Recharge tests

The aquifer hydraulic conductivity at each test pit was tested by pumping brine out of the pits and then measuring the rate of water level recovery with a pressure transducer as the pits were refilled by brine inflow from the surrounding aquifer. 

Auger Piezometer Slug Tests

Auger drillholes completed as piezometers were hydraulically tested by slug tests that comprise instantaneously introducing, then removing a slug (cylinder) of know volume from the piezometer.  The rate of water level recovery following slug insertion and withdrawal is measured with a pressure transducer and the rate of recovery is analysed to determine hydraulic conductivity.

Historic Production Bores

Two historic investigation bores were test pumped to determine aquifer parameters.  The bores were pumped by Global Groundwater Pty Ltd at a constant rate for 24 hours.  Water level drawdown in the pumped bore, and in nearby observation bores was monitored manually and by data logger.  The data was analysed to determine aquifer properties of transmissivity (Product of bulk average hydraulic conductivity and aquifer thickness), Storage coefficient and boundary conditions.

Sample Analysis Method

Brine Chemistry Determination

The Primary Laboratory was Bureau Veritas Minerals Laboratory in Perth. Duplicate samples were sent to the secondary laboratory; Intertek, Perth.

Porosity

Porosity determination was undertaken by Core Laboratories Australia Pty Ltd, Perth.

Total Porosity was determined gravimetrically by weighing before and after drying at 60 degrees to stable final weight.

Drainable Porosity was determined gravimetrically by re-saturating samples with formation brine and spinning in a centrifuge at 3,700 rpm until brine production stopped. The samples were weighed before and after re-saturation and centrifuge.

Verification and QA/QC

QA/QC of brine chemistry determination comprised

·      Duplicate samples send to a secondary laboratory

·      Ionic ratio checks to identify outliers

·      Charge Balance Check

Resource Estimation Methodology

The resource is calculated as the tonnage of minerals dissolved in the liquid brine contained in porewithin the hostrock. Tonnages are calculated as dissolved minerals in brine on a dry weight by volume basis e.g. kilograms potassium per cubic meter of brine. The potassium tonnage of the resource is then calculated as:

Rock volume x volumetric porosity brine volume

Brine volume x concentration = tonnage.

Williamson Pit

The mineralisation contained within the Williamson Pit was previously reported in the Company’s ASX Announcement dated 31 July 2018.  That estimate remains unchanged and comprises 0.032Mt SOP dissolved in 1.26Mm3 brine at an average grade of 24.4kg/m3 SOP.

Lake Bed Sediment

Area

The lateral extent of the resource is defined by the tenement boundaries and the playa boundary as defined in Geoscience Australia’s 1:250K topographic dataset.

The islands in the north and south of the playa have been removed from the resource.

The Williamson pit has resulted in a zone of dewatered material extending out some 500m from the mine pit.  This area has been removed from the resource estimate.

The lake was then split into 2 areas, the north portion where almost all test work has been completed, and the south portion where little test work has been completed due to accessibility and the only very recent granting of the final Exploration lease on the lake. The North end of the lake is being reported here as a measured resource and the south as an inferred resource.

The total area of the North and South of the lake are 139.5 and 41.6km2 respectively.

Thickness

The thickness of the resource estimate has been constrained to 8 m below ground surface on the basis that production trenches are unlikely to exceed that depth.

Porosity

Drainable porosity determined from field pumping trials averages 11% by volume.  Drainable porosity determined from laboratory analysis of intact samples averages 10% by volume.

Total porosity determined from laboratory analysis of intact samples averages 42% by volume.

Table 5: Total Porosity and Drainable Porosity

Test Pit or Trench ID

Sample Depth (m)

Total Porosity (%)

Drainable Porosity (%)

Test Pit or Trench ID

Sample Depth (m)

Total Porosity (%)

Drainable Porosity (%)

LYAG01

2.0 – 3.0

45

10.3

LYTT010

0.5 – 4.0

38

3

LYAG01

3.0 – 4.0

35

8

LYTT014

0.3 – 0.8

52

LYAG01

5.0 – 6.0

39

7.4

LYTT014

0.3 – 0.6

46

11

LYAG02

1.0 – 2.0

29

9.3

LYTT015

1.5 – 2.0

41

5

LYAG02

4.0 – 5.0

53

11.1

LYTT017

0.6 – 1.1

50

LYAG06

1.0 – 2.0

45

14.6

LYTT019

0.6 – 1.1

48

LYAG06

2.0 – 3.0

42

10.4

LYTT019

0.3 – 0.6

26

16

LYAG06

3.0 – 4.0

42

11.5

LYTT019

1.5 – 2.0

47

13

LYAG06

5.0 – 6.0

42

10

LYTT019

3.0 – 4.0

35

8

LYAG07

1.0 – 2.0

43

14

LYTT020

0.5 – 1.0

54

LYAG07

3.0 – 4.0

41

8

LYTT020

3.0 – 4.0

50

6

LYAG08

1.0 – 2.0

35

9.4

LYTT021

0.6 – 1.1

50

LYAG08

2.0 – 3.0

32

10

LYTT024

0.5 – 0.9

50

LYAG08

3.0 – 4.0

26

8

LYTT026

0.3 – 0.6

39

10

LYAG15

2.0 – 3.0

33

7.4

LYTT026

3.0 – 4.0

47

24

LYAG15

4.0 – 5.0

36

8.8

LYTT029

4.0 – 5.0

38

5.2

LYTR01

0.5 – 1.5

48

14.2

LYTT029

1.0 – 4.0

47

3

LYTR01

1.0 – 1.2

37

26

LYTT032

0 – 0.5

38

13.8

LYTR01

1.5 – 3.0

48

1.5

LYTT035

3.0 – 3.5

43

5

LYTR01

3.0 – 4.0

36

5

LYTT035

0 – 0.5

39

12

Average

42

10

 

Solute Concentration

Brine chemistry has been interpolated using Ordinary Kriging with a grid size of 100m x 100m, a search distance of 6,000m and 2 search passes. Average concentrations have been calculated from the grid for the Measured Resource (North portion of the lake), this average has been used to calculate the Resource for the southern, inferred resource.

Treatment of Islands

The islands have been removed from the Lake Bed Sediment Resource.  Experience at other lakes has consistently shown that shallow brine beneath islands is diluted, likely by infiltrating rainfall.  Furthermore, brine harvesting by trenches is unlikely to be practical through the sand dunes and elevated topography of the islands.

Paleovalley Sediment

Area

The lateral extent of the resource is defined by the tenement boundaries and the playa edge. The total area is 181.1km2.

Volume

The volume of sediment infilling the paleovalley has been exported from the geological model. The Volume is 9,900Mm3. This yields an average sediment thickness of 54m for the sediment extending from 8m depth (base of lake bed sediment) to the top of basement or Paleochannel Basal Sand.

Porosity

The Total Porosity and Drainable Porosity has been estimated from lithology and benchmarking against other studies completed in comparable geological settings. Total porosity is applied as 40%.  Drainable porosity is applied as a low value of 3% based on the fine-grained lithology of the host sediment which will retain much of the contained brine.

Solute Concentration

Solute concentration is inferred to be continuous from the Playa Surface to the base of the Paleovalley Sediment.  The average value is 15.2kg/m3 SOP.

Paleochannel Basal Sand

Area

The extent and thickness of the Paleochannel Basal Sand Resource is defined by the geological model. The total volume of the unit is estimated to be 686Mm3.

Porosity

The Total Porosity and Drainable Porosity has been estimated from lithology and benchmarking against other studies completed in comparable geological settings.  Total porosity is applied as 40%.  Drainable porosity is applied as 15%. 

Solute Concentration

Solute concentration is derived as the average value of the two pumping test bores completed in the basal sand unit, LW5-7 and LW3-4. Multiple samples were taken from each bore during the 24 hour constant rate pumping test undertaken at each bore. The average SOP concentration is 13.6kg/m3 SOP. No spatial interpolation was undertaken.

Classification Criteria

Williamson pit

The estimated resource hosted in the Williamson Pit mine lake has a very high degree of confidence, since the geometry of the mine pit was accurately surveyed and the concentration of the brine was samples at numerous locations and depths and is quite consistent. 

The resource is reported as a Measured Resource on the basis that the estimate is adequate to support a mine plan (in this case pumping infrastructure and pumping rate).

Lake Bed Sediments (North)

The estimated resource in the northern part of the lake has a high degree of confidence.

The resource estimate and associated hydrological data set are considered adequate to support a mine plan.  In this case the mine plan comprises design of a production trench network and construction of a groundwater flow simulation model to estimate and plan brine production rates. The resource is reported as a Measured Resource.

The thickness of the geological unit is well defined, being simply 8m; the assumed limit of excavation. The area is well defined by the extent of the playa surface.

Brine concentration is defined by a high density or data points and is quite consistent spatially.  There is a high degree of confidence that the brine concentration is accurately defined.

Aquifer total porosity and drainable porosity are well defined by a large number of samples at a range of depths, and drainable porosity values are validated by extended pumping field trials that comprise the drainage of very large volumes of sediment.

Aquifer properties of hydraulic conductivity are well defined by a well distributed data set of test pits and extended duration pumping trials.

The lake water balance due to rainfall and inundation is understood from a reasonably constrained catchment run-off model.

The Measured Resource estimate is based on 49 test pits, 5 trench tests and 13 auger holes. Data points are distributed on an approximate 500m by 500m grid in the northwest and on a 5km x 5km grid for the remainder of the lake.  There is irregularity due to greater density of pits around the proposed pond locations, the causeway, the Williamson Pit dewatered zone and tenure access constraints to the immediate east of the playa.

Lake Bed Sediments (South)

The estimated resource in the southern part of the lake has a low degree of confidence. 

The resource estimate is based on assumed continuity of grade and porosity and is not adequate to support a mine plan.  The resource is reported as an Inferred Resource.

The thickness of the geological unit is well defined, being simply 8m; the assumed limit of excavation.

The area is well defined by the extent of the playa surface.

Brine grade is assumed to be continuous and consistent from the north to the south of the lake.  This assumption is not yet confirmed by test work.

Total Porosity and Drainable Porosity are assumed to be continuous and consistent from the north to the south of the lake.  This assumption is based on lithology logged in historic drilling but is not yet confirmed by test work.

Hydraulic properties are assumed to are assumed to be continuous and consistent from the north to the south of the lake.  This assumption is based on lithology logged in historic drilling but is not yet confirmed by test work.

The Inferred Resource Estimate is based on a very limited number of drillholes. The geology is defined by 10 historic drillholes oriented on a transect across the southern end of the Lake, and the geophysical survey. Brine Grade is assumed to be continuous from the data in the northern part of the Lake.  

Potash Brine projects typically exhibit low spatial variability in brine grade since the brine resource is generated in-situ by evaporation of a fairly consistent groundwater source which is subject to sporadic mixing and dilution due to infiltration of rainwater, and subsequent re-concentration by evaporation. Drill spacing in the range of 2.5km  to 10km is typical (Houston et al 2011).

Paleovalley Sediment

The estimated resource in Paleovalley sediment has a low degree of confidence.  The Resource estimate is based on assumed continuity of grade and porosity and is not adequate to support a mine plan. The resource is reported as an Inferred Resource.

The volume of the geological unit is well defined by a geological model based on detailed geophysical survey validated to an extensive drilling data set.

The area is well defined by the extent of the playa surface.

Brine grade is assumed to be continuous and consistent from the Playa surface to the base of the geological unit.  This assumption is supported by only a limited number of data points where brine chemistry at surface and at depth are available.

Total Porosity and Drainable Porosity values are based on lithology logged in historic drilling and on benchmarking of comparable projects in Tertiary paleochannels in Western Australia. The values are not yet confirmed by test work.

Hydraulic properties of the units inferred from the lithology of the unit, and the response to pumping of two test bores.

For this unit a mine plan comprises design of a production bore array to depressurise the underlying basal sand and induce downward vertical leakage from the paleovalley sediment. A groundwater flow simulation model calibrated to long term pumping trials will be needed to estimate and plan the rate at which vertical leakage of brine can be induced.

The Inferred Resource Estimate is based on a limited number of drillholes. The 49 test pits, 5 trench tests and 13 auger holes terminate above the top of the unit, and continuity of brine grade with depth is assumed based on consistent experience at other salt lake playas, and data demonstrating continuous brine grade in the underlying Basal Sand unit.  The geological model that defines the volume is based on 224 historic drillholes and the geophysical survey.

Paleochannel Basal Sand

The estimated resource in Paleochannel Basal Sand has a moderate degree of confidence. 

The data is adequate to allow confident interpretation of the geological framework which is based on a good density of drilling and geophysical data.  The continuity of brine concentration between very widely spaced samples is however assumed.   The estimate is adequate to apply modifying factors in a Feasibility Study but is not adequate to support a detailed mine plan. The resource is reported as an Indicated Resource.

Total Porosity and Drainable Porosity values are based on lithology logged in historic drilling and on benchmarking of comparable projects in Tertiary paleochannels in Western Australia. The values are not yet confirmed by test work.

Hydraulic properties of the units inferred from the lithology of the unit, and the response to pumping of two test bores.

The Indicated Resource Estimate is based on two data points that inform brine grade and hydrogeological properties.  The geological model is based on a larger number of drillholes (23 of 224 drillholes are within the paleochannel extent) and the geophysical survey.

Results

The results of the Mineral Resource Estimate are summarised in the tables below.

 

Table 6: Measured Resource

Total Volume

Brine Concentration

Mineral Tonnage Calculated from
Total Porosity

K

Mg

SO4

Total Porosity

Brine Volume

SOP Tonnage

Drainable Porosity

Brine Volume

SOP Tonnage

(Mm3)

(kg/m3)

(kg/m3)

(Kg/m3)

(Mm3)

(Mt)

(Mm3)

(Mt)

North Lakebed

(0.4-8.0m)

1,060

6.8

8.0

27.6

0.42

445

6.8

0.11

117

1.8

Williamson Pit

1.26

11.4

14.7

48.0

1.26

0.032

Total

6.8

1.832

Table 7: Indicated Resource

Total Volume

Mineral Tonnage Calculated from Total Porosity

K

Mg

SO4

Total Porosity

Brine Volume

SOP Tonnage

Drainable Porosity

Brine Volume

SOP Tonnage

(Mm3)

(kg/m3)

(kg/m3)

(Kg/m3)

(Mm3)

(Mt)

(Mt)

(Mm3)

Basal Sands

686

6.1

8.2

25.0

0.40

274

3.7

15

103

1.4

Table 8: Inferred Resource

Total Volume

Mineral Tonnage Calculated from Total Porosity

K

Mg

So4

Total Porosity

Brine Volume

SOP Tonnage

Drainable Porosity

Brine Volume

SOP Tonnage

(Mm3)

(kg/m3)

(kg/m3)

(Kg/m3)

(Mm3)

(Mt)

(Mm3)

(Mt)

South Lakebed

(0.4-8.0m)

316

6.8

8.0

27.6

0.42

133

2.0

0.11

35

0.5

Lakebed

(8m to Base)

9,900

6.8

8.0

27.6

0.40

3,960

60.0

0.03

297

4.5

Total

62.0

5.0

 

  Note:              1) Conversion factor of K to SOP (K2SO4 equivalent) is 2.23

                   2) Williamson Pit and Lakebed Sediment (North – Blackham tenements only) resource estimate reported previously as maiden resource 31 July 2018.

 

Cut-off Grades

Within the salt-lake extent no low-grade cut-off or high-grade capping has been implemented due to the consistent nature of the brine assay data. No aggregate intercepts have been calculated.

Mining and Metallurgical Methods and Parameters

It is assumed that the Brine resource will be mined by gravity drainage to a network of trenches excavated into the Playa Surface and an array of production bores completed in the paleochannel basal sand. 

Validation test work has been completed to confirm the process flowsheet to be used at the Lake Way Project to recovery SOP from the Lake Brine (refer ASX Announcement 31 October 2018).

Environmental impacts are expected to be; localized reduction in saline groundwater level, surface disturbance associated with trench, bore, and pond construction and accumulation of salt tails. The project is in a remote area and these impacts are not expected to prevent project development.

The project is located with the Goldfields Groundwater Proclamation Area. A license to take groundwater will be required under the Rights in Water and Irrigation Act 1914.  This Act is administered by the Government of Western Australia Department of Water and Environmental Regulation.

 

Forward Looking Statements

This announcement may include forward-looking statements. These forward-looking statements are based on Salt Lake’s expectations and beliefs concerning future events. Forward looking statements are necessarily subject to risks, uncertainties and other factors, many of which are outside the control of Salt Lake, which could cause actual results to differ materially from such statements. Salt Lake makes no undertaking to subsequently update or revise the forward-looking statements made in this announcement, to reflect the circumstances or events after the date of that announcement.

Competent Person Statement

The information in this report that relates to Mineral Resources and Exploration Results for Lake Way is based on information compiled by Mr Ben Jeuken, who is a member Australian Institute of Mining and Metallurgy and a member of the International Association of Hydrogeologists. Mr Jeuken is employed by Groundwater Science Pty Ltd, an independent consulting company. Mr Jeuken has sufficient experience, which is relevant to the style of mineralisation and type of deposit under consideration and to the activity, which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the ‘Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves’. Mr Jeuken consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Production Target

The Lake Way Demonstration Plant Production Target stated in this report is based on the Company’s Scoping Study as released to the ASX on 31 July 2018. The information in relation to the Production Target that the Company is required to include in a public report in accordance with ASX Listing Rule 5.16 and 5.17 was included in the Company’s ASX Announcement released on 31 July 2018. The Company confirms that the material assumptions underpinning the Production Target referenced in the 31 July 2018 release continue to apply and have not materially changed.

 

The information contained within this announcement is deemed to constitute inside information as stipulated under the Market Abuse Regulations (EU) No. 596/2014. Upon the publication of this announcement, this inside information is now considered to be in the public domain

 

Appendix 1: Extraction Method and Implication for Resource Estimate

Overview

Mining methods employed for brines is different to those required for mining solid minerals. The typical mining method for brines is to pump the brine resource from trenches or bores that are installed in the geological unit that hosts the brine.  The rate that the brine can be pumped is controlled by the hydraulic conductivity (permeability) of the host rock.  For the Lake Way Project, the mining methods for each host geological unit are summarised in the table below.

Table 9: Mining Method

Host Unit

Mining Method

Controls on the mining rate and resource

Williamson Pit Lake

Pumping from Pit Lake

None

Lake Bed Sediment

Pumping from trenches

Hydraulic conductivity of lake sediment,

Recharge via rainfall and inundation

Total Porosity

Paleovalley Fill

Vertical drainage to Basal Sand

Vertical hydraulic conductivity

Drainable porosity, and compressible storage.

Basal Sand

Pumping from bores

Hydraulic conductivity,

Total porosity

Aquifer Boundary conditions (vertical and lateral inflow under pumping)

 

Williamson Pit Lake

Brine from the Williamson Pit Lake will be pumped directly from the pit into the evaporation pond for processing.  The mining rate is controlled only by the capacity of the pumping infrastructure.

Lake Bed Sediment

The shallow Lake Bed Sediments aquifer will be mined by pumping brine from a network of trenches excavated into the playa surface to a depth of nominally 6m, though trenches may be deepened over time.

The production of brine is cyclic as described below.

Stage 1 – Initial Resource

The initial brine resource comprises:

·      Brine dissolved in water held in Drainable Porosity, (5% of the total aquifer volume).

·      Brine dissolved in water held in Retained Porosity, (35% of total aquifer volume).

The remaining volume is occupied by solid material (sand, silt and clay grains comprising 60% of the aquifer volume).

The combined porosity (Total Porosity) then comprises the total SOP brine resource held in the Lake Bed Sediments aquifer.

Stage 2 – Production Cycle

During production the brine drains under gravity toward the trench and is subsequently removed by pumping.  This creates a hydraulic gradient toward the trench and brine is drawn some distance through the aquifer toward the trench (typically hundreds of meters depending on aquifer permeability).

Over time the aquifer immediately surrounding the trench is partially dewatered.  This means that the drainable brine has been removed from the sediment, but the retained brine is still held in place by surface tension.

Stage 3 – Recharge Cycle

Western Australian Salt Lake playas receive some water input from rainfall and run-off annually.  Direct rainfall lands on the playa each year, and most years, heavy, cyclonic rain events cause run-off from the surrounding catchment onto the Playa.  This water infiltrates the playa surface and re-fills the drainable pores in the aquifer.  The larger rainfall events usually occur from January through to March.

Stage 4 – Mixing Cycle

The water that has infiltrated and refilled the drainable porosity then mixes (by physical diffusion) with the brine held in retained porosity.

Through repeated production cycles the total brine resource is mined.  The concentration of brine pumped from the production trenches will decline over time as the total resource is depleted over repeated production cycles.

The pumping rate is controlled by the hydraulic conductivity of the host sediment.  The concentration of produced brine will change over time and will be controlled by the tonnage contained in total porosity and the mechanism of mixing between repeated production cycles.

Paleovalley Sediment

The paleovalley sediment is predominately fine grain and exhibits low permeability.  The brine held in these sediments cannot be drained directly to bores because the permeability is too low to allow useful bore yields.

A proportion of the brine held in these sediments can be removed by underdrainage to the underlying Basal Sand unit.

Brine is removed from the Basal Sand unit by pumping from bores.  This depressurises the Basal Sand unit and induces downward brine leakage from the overlying sediment.  The rate of leakage will be very low; however, the areal extent is very large and significant volumes can be abstracted in this way.

Only a relatively small fraction of the total porosity can be removed from a fine-grained unit by this method.

Paleochannel Basal Sand

The brine will be produced by pumping from bores constructed into the Paleochannel Basal Sand. Pumping from a deep, confined aquifer results in reduced pressure in the aquifer and this induces brine flow toward the bores.  Brine flow is sourced via downward vertical leakage from the overlying fine-grained silts and clays, and by lateral flow from the adjacent basement aquifer that surrounds the channel.

It is important to understand that the aquifer is not dewatered.  This means that the pore spaces are not drained under gravity to be filled with air. The aquifer is only depressurised, and this results in flow through fully saturated pores toward the pumped bore.

 

Appendix 2: Location Details for Drill Holes / Test Pits

HOLE_ID

EAST

NORTH

Hole Type

HA003

235863

7032512

Hand Auger

HA006

235652

7033571

Hand Auger

HA008

234918

7033057

Hand Auger

HA010

235063

7034408

Hand Auger

HA012

234299

7033837

Hand Auger

HA013

234890

7035481

Hand Auger

HA014

234458

7035223

Hand Auger

HA017

234302

7035685

Hand Auger

HA019

234752

7036712

Hand Auger

HA021

233742

7036709

Hand Auger

HA022

234734

7037719

Hand Auger

HA024

233715

7039225

Hand Auger

HA025

233868

7032968

Hand Auger

HA029

231655

7036814

Hand Auger

HA031

231874

7037525

Hand Auger

LYTR001

233590

7036757

Test Trench

LYTR002

235090

7035280

Test Trench

LYTR003

230650

7041000

Test Trench

LYTR004

232330

7035720

Test Trench

LYTR005

238875

7035948

Test Trench

LYTT002

229968

7036837

Test Pit

LYTT003

230702

7036399

Test Pit

LYTT004

231815

7035595

Test Pit

LYTT005

232341

7035793

Test Pit

LYTT006

232183

7035073

Test Pit

LYTT007

231817

7034412

Test Pit

LYTT012

233601

7037586

Test Pit

LYTT013

233600

7034800

Test Pit

LYTT014

233600

7034000

Test Pit

LYTT015

233600

7033200

Test Pit

LYTT016

234600

7032000

Test Pit

LYTT017

235300

7032400

Test Pit

LYTT018

235300

7033200

Test Pit

LYTT019

236300

7033200

Test Pit

LYTT020

234600

7033200

Test Pit

LYTT021

234600

7034000

Test Pit

LYTT022

235650

7034000

Test Pit

LYTT023

235300

7034800

Test Pit

LYTT024

234600

7034800

Test Pit

LYTT025

234600

7035600

Test Pit

LYTT026

234600

7036800

Test Pit

LYTT027

235511

7040910

Test Pit

LYTT028

237073

7040940

Test Pit

LYTT028

237073

7040940

Test Pit

LYTT030

230700

7041600

Test Pit

LYTT031

229531

7041686

Test Pit

LYTT032

229551

7040432

Test Pit

LYTT033

230700

7040400

Test Pit

LYTT034

230700

7039200

Test Pit

LYTT035

230700

7037600

Test Pit

LYTT036

231800

7037200

Test Pit

LYTT037

238858

7037915

Test Pit

LYTT039

240934

7032003

Test Pit

LYTT041

242068

7026888

Test Pit

LYTT042

244658

7026362

Test Pit

LYTT043

243355

7028717

Test Pit

LYTT045

241951

7033872

Test Pit

LYTT048

235845

7038688

Test Pit

LYTT049

236788

7034678

Test Pit

LYPIEZ01

236853

7032051

Auger

LYPIEZ03

238851

7037911

Auger

LYPIEZ04

239481

7030505

Auger

LYPIEZ06

238854

7035878

Auger

LYPIEZ07

238747

7034697

Auger

LYPIEZ08

235865

7038720

Auger

LYPIEZ09

240944

7031987

Auger

LYPIEZ11

243089

7032074

Auger

LYPIEZ13

238602

7039558

Auger

LW3-4

247448

7031876

Historic Pumped bore

LW5-7

242593

7034360

Historic Pumped bore

Note: All holes are vertical, with an RL of approximately 492m

 

Appendix 3: Brine Assay Results

Lake Bed Sediment

HOLE_ID

K

mg/L

Cl

mg/L

Na

mg/L

Ca

mg/L

Mg

mg/L

SO4

mg/L

pH

 

SG

 

HA003

7210

131450

77200

499

7510

26200

6.87

1.16

HA006

6910

128050

78600

528

7000

25500

6.9

1.16

HA008

7280

121350

73900

537

6530

28200

6.91

1.16

HA010

6350

112150

68100

621

6180

23900

6.99

1.14

HA012

6550

115700

68600

574

6690

25300

6.95

1.14

HA013

6070

108500

65900

623

6070

24000

7

1.14

HA014

6050

104250

63900

666

5620

23700

7.03

1.13

HA017

3320

52500

33000

804

2790

14800

7.31

1.07

HA017

6090

101600

63100

664

5450

24200

7.04

1.13

HA019

6030

113600

67600

591

7010

25700

6.96

1.15

HA021

5960

110250

65000

610

6150

23300

7.03

1.14

HA022

6550

111400

68500

636

6050

23600

7.02

1.14

HA024

6100

130850

75000

536

8650

25300

6.89

1.17

HA025

6810

126800

76500

519

7160

26300

6.96

1.16

HA029

6730

131200

79500

447

8070

33000

6.94

1.17

HA031

5910

117600

70200

615

6940

23400

6.98

1.15

LYTR001

6300

125550

74000

534

7410

26300

6.19

1.17

LYTR002

6270

118300

73600

526

7280

27300

6.23

1.16

LYTR003

7060

130450

83900

476

7670

29700

6.57

1.18

LYTR004

7115

129675

83050

502

7660

28900

6.62

1.18

LYTR005

6620

144550

82500

411

9930

32400

6.54

1.19

LYTT002

7350

145050

90000

367

10900

38700

6.36

1.20

LYTT003

8160

151150

91400

305

12200

42600

6.5

1.21

LYTT004

6700

126350

76200

441

8090

29400

6.74

1.17

LYTT005

6760

122700

74500

553

7100

25100

6.79

1.16

LYTT006

6970

129000

78700

514

7500

26600

6.69

1.17

LYTT007

6600

130400

78100

484

8010

28900

6.53

1.17

LYTT012

6470

120100

74300

575

7240

25800

6.65

1.16

LYTT013

6510

117750

72500

562

7000

25400

6.92

1.15

LYTT014

6840

123700

76000

586

7020

26100

6.9

1.16

LYTT015

7150

128750

78900

517

7300

28000

6.88

1.17

LYTT016

6990

137650

86000

458

8290

29300

6.71

1.18

LYTT017

7150

129450

80300

498

7400

27200

6.88

1.17

LYTT018

7270

128050

78500

492

7340

28800

6.88

1.17

LYTT019

6800

121600

73500

532

7040

26600

6.88

1.16

LYTT020

6840

124050

74900

549

7020

26100

6.83

1.16

LYTT021

6390

117100

71600

571

6890

26000

6.86

1.16

LYTT022

6630

119150

74600

543

7010

26700

6.93

1.16

LYTT023

6510

123700

72000

556

6790

25100

6.85

1.16

LYTT024

6240

113400

70100

581

6850

26300

6.88

1.15

LYTT025

6330

115700

71500

559

6960

27300

6.85

1.16

LYTT026

7060

125450

77700

519

7030

26200

6.79

1.16

LYTT027

7080

133850

83300

390

9930

37800

6.89

1.18

LYTT028

6360

130350

80800

410

10200

36900

6.95

1.18

LYTT028

7210

145150

87000

358

11600

37800

6.83

1.20

LYTT030

7300

133500

81200

362

9150

33000

6.86

1.19

LYTT031

8760

147100

89700

347

11300

41100

6.82

1.21

LYTT032

7030

137850

81900

408

10400

29900

6.88

1.18

LYTT033

6930

131750

81300

444

10300

33600

6.79

1.13

LYTT034

7190

127750

78200

526

7630

26100

6.74

1.17

LYTT035

6740

134050

80600

418

11000

35400

6.75

1.19

LYTT036

6570

137350

81400

369

12700

38100

6.82

1.20

LYTT037

6780

150000

86100

371

10300

35400

6.7

1.20

LYTT039

7390

133450

78700

563

6670

23900

6.68

1.16

LYTT041

7660

135300

80700

577

6730

24400

6.79

1.17

LYTT042

7520

149250

86000

522

8340

23900

6.62

1.19

LYTT043

5980

110400

65200

726

5820

19700

6.59

1.14

LYTT045

7600

139300

79400

502

6740

24200

6.57

1.18

LYTT048

6910

131100

77300

501

7600

26500

6.55

1.17

LYTT049

7160

139850

82000

485

7850

27600

6.57

1.18

LYPIEZ01

6000

139715

82900

446

10100

26000

6.42

1.18

LYPIEZ03

4560

97584

63400

439

7580

24700

6.97

1.14

LYPIEZ04

6450

145100

82500

478

9340

26200

6.57

1.18

LYPIEZ06

6140

137254

82900

416

9810

31500

6.59

1.18

LYPIEZ07

6660

130087

82800

504

7710

27100

6.73

1.18

LYPIEZ08

7030

136000

77400

473

8040

27800

6.48

1.18

LYPIEZ09

6950

131300

75500

552

7420

24100

6.52

1.16

LYPIEZ11

6590

115300

68200

679

5350

19400

6.7

1.15

LYPIEZ13

7000

138485

85800

453

8800

31200

6.63

1.19

 

Paleochannel Basal Sand

HOLE_ID

K

mg/L

Cl

mg/L

Na

mg/L

Ca

mg/L

Mg

mg/L

SO4

mg/L

pH

 

SG

 

LW3-4

6160

149053.85

83000

455

8290

25600

6.5

1.18

LW3-4

5880

145796.24

78300

435

7900

23400

6.54

1.18

LW5-7

6080

151515.16

78600

397

8360

26100

6.38

1.19

LW5-7

6270

150501.68

84400

402

8520

26600

6.41

1.18

 

 

 

Appendix 4: JORC Code, 2012 Edition – Table 1

Section 1 Sampling Techniques and Data

Criteria

JORC Code explanation

Commentary

Sampling techniques

·     Nature and quality of sampling (e.g.  cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as downhole gamma sondes, or handheld XRF instruments, etc.).  These examples should not be taken as limiting the broad meaning of sampling.

·     Include reference to measures taken to ensure sample presentively and the appropriate calibration of any measurement tools or systems used.

·     Aspects of the determination of mineralisation that are Material to the Public Report.

·     In cases where ‘industry standard’ work has been done, this would be relatively simple (e.g.  ‘reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay’).  In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems.  Unusual commodities or mineralisation types (e.g.  submarine nodules) may warrant disclosure of detailed information.

Sampling involved the excavation of test pits over the tenement area to a depth of 4mbgl or weathered basement whichever was encountered first.  Five trenches were also dug to 4m depth,

 

A brine sample and duplicate were taken from each test pit and trench for analysis.

 

Samples were taken manually by initially rinsing out the bottle with brine from the pit or trench and then placing the bottle in the test pit or trench and allowing it to fill.

 

Samples were analysed for K, Mg, Ca, Na, Cl, SO4, HCO3, NO3, pH, TDS and specific gravity.

 

Each test pit was geologically logged and a sample taken each 1m depth.

 

Shelby Tubes were pushed into the sediment during test pit excavation to obtain intact samples for porosity determination.

 

Test pumping entailed pumping from the trenches and test pits using a diesel driven submersible pump coupled to a level switch.

 

Water levels in the piezometer, test pits and trenches were logged manually and by pressure transducer with barometric pressure and brine density correction.

 

Auger drilling comprised hollow core augers. Samples were taken from the recovered core.

Drilling techniques

·     Drill type (e.g.  core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g.  core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.).

Test pits and trenches were dug with an excavator.

 

Drillholes were drilled by hollow core auger.  Auger holes were cased with 50mm PVC slotted liner to allow hydraulic testing and repeated sampling.

 

 

Drill sample recovery

·     Method of recording and assessing core and chip sample recoveries and results assessed.

·     Measures taken to maximise sample recovery and ensure representative nature of the samples.

·     Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.

Samples from the test pits were logged each bucket and a representative sample bagged.

 

100% of excavated sample was available for sampling.  The ability to see the bulk sample facilitated the selection of a representative sample.

 

There is no relationship between sample recovery and grade and no loss of material as a result of excavation.

 

Logging

·     Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.

·     Whether logging is qualitative or quantitative in nature.  Core (or costean, channel, etc.) photography.

·     The total length and percentage of the relevant intersections logged.

The geological logging is sufficient for the purposes of identifying variations in sand/ clay and silt fraction within the top 4m.  For a brine abstraction project, the key parameters are the hydraulic conductivity and storage of the host rock.

The logging is qualitative.

The entire pit depth was logged in every case.

 

 

Sub-sampling techniques and sample preparation

·     If core, whether cut or sawn and whether quarter, half or all core taken.

·     If non-core, whether riffled, tube sampled, rotary split, etc.  and whether sampled wet or dry.

·     For all sample types, the nature, quality and appropriateness of the sample preparation technique.

·     Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.

·     Measures taken to ensure that the sampling is representative of the insitu material collected, including for instance results for field duplicate/second-half sampling.

·     Whether sample sizes are appropriate to the grain size of the material being sampled.

Full core was used for porosity determination.

 

Not applicable, core drilling.

 

At all test pits brine samples were taken from the pit after 24hours or once the pit had filled with brine.  The brine samples taken from the pits are bulk samples which is an appropriate approach given the long-term abstraction technique of using many kilometres of trenches to abstract brine from the upper 4m.

 

All the samples taken were incorporated into a rigorous QA / QC program in which Standards and Duplicates were taken. The samples were taken in sterile plastic bottles of 250ml capacity.

 

Excavated lake bed samples were sealed in plastic bags.  For all brine samples (original or check samples) the samples were labelled with the alphanumeric code Y8001, Y80002 …

 

Lake bed samples were labelled with the test pit locator LYTT01, LYTT02 etc. and the depth from which they were taken.

 

 

Quality of assay data and laboratory tests

·     The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.

·     For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.

·     Nature of quality control procedures adopted (e.g.  standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e.  lack of bias) and precision have been established.

The brine samples were sent to Bureau Veritas Laboratories in Perth, WA with the duplicates being held by Salt Lake Potash.  Every 10th duplicate was sent to Intertek, an alternate laboratory for comparison purposes.

 

No laboratory analysis was undertaken with geophysical tools.

 

Soil samples and laboratory derived hydraulic conductivity, total porosity and drainable porosity samples were analysed by Core Laboratories in Perth WA.  All laboratories used are NATA certified.

 

Verification of sampling and assaying

·     The verification of significant intersections by either independent or alternative company personnel.

·     The use of twinned holes.

·     Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.

·     Discuss any adjustment to assay data.

Not applicable due to consistent brine concentration.

 

No twin holes drilled.

 

All sampling and assaying is well documented and contained on Salt Lake Potash’s internal database.

 

No adjustments have been made to assay data.

Location of data points

·     Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.

·     Specification of the grid system used.

·     Quality and adequacy of topographic control.

All coordinates were collected by handheld GPS.

 

The grid system is the Australian National Grid Zone MGA 51 (GDA 94).

 

The is no specific topographic control as the lake surface can essentially be considered flat.

 

Data spacing and distribution

·     Data spacing for reporting of Exploration Results.

·     Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.

·     Whether sample compositing has been applied.

 

Data spacing is addressed in the body of the Announcement.

 

Sample compositing not applied.

 

Orientation of data in relation to geological structure

·     Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.

·     If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.

The orientation of sampling was suited to the geological structure.

 

Geological influence on the brine is limited to the aquifer parameters of the host rock, namely the hydraulic conductivity, Total Porosity and drainable porosity.

 

Sample security

·     The measures taken to ensure sample security.

Salt Lake Potash field geologists were responsible for bagging and tagging samples prior to shipping to the BV lab in Perth and the Salt Lake Potash offices.  The security measures for the material and type of sampling at hand was appropriate.

Audits or reviews

·     The results of any audits or reviews of sampling techniques and data.

Data review is summarised in the report and included an assessment of the quality of assay data and laboratory tests and verification of sampling and assaying.  No audits of sampling techniques and data have been undertaken.

 

Section 2 Reporting of Exploration Results

Criteria

JORC Code explanation

Commentary

Mineral tenement and land tenure status

·     Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.

·     The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.

The Lake Way Project comprises tenements held by Salt Lake Potash and Blackham Resources Limited (Blackham).

Salt Lake Potash holds tenements covering the south east of the lake, including granted Exploration licences E53/1878, E53/1897 and Exploration Licence Applications E53/2057, E53/2059 and E53/2060.

On the 9th March 2018 Salt Lake Potash and Blackham Resources Ltd signed a gold and brine minerals memorandum of understanding.  Under this MOU Blackham has granted the brine rights on its Lake Way tenement free from encumbrances to Salt Lake Potash.

Tenure granted to Blackham Resources Ltd. and its subsidiaries that is covered by the MOU includes:

Exploration licences E53/1288, E53/1862, E53/1905, E53/1952,

Mining Licences, M53/121, M53/122, M53/123, M53/147, M53/253, M53/796, M53/797, M53/798, M53/910, and

Prospecting Licences P53/1642, P53/1646, P53/1666, P53/1667, P53/1668.

Exploration done by other parties

·     Acknowledgment and appraisal of exploration by other parties.

There is a database of approximately 6200 boreholes across Lake Way, of which some 1000 are within the Blackham tenement area.  The primary source for the information is the publicly available Western Australian Mineral Exploration (WAMEX) report data base.

Recent sterilisation drilling has also been undertaken by Blackham to the south and east of the Blackham tenement area.

The majority of previous work has been concerned with investigating the bedrock and calcrete for gold and Uranium, it is of limited value in defining the stratigraphy of the lakebed sediments. 

The data has been shown to be useful in the determination of the depth to base of lakebed sediments and has been used to develop an overall estimate of the volume of lake bed sediments that has been applied to the mineral resource calculations.

Geology

·     Deposit type, geological setting and style of mineralisation.

The deposit is a salt-lake brine deposit.

 

The lake setting is typical of a Western Australian palaeovalley environment. Ancient hydrological systems have incised palaeovalleys into Archaean basement rocks, which were then infilled by Tertiary-aged sediments typically comprising a coarse-grained fluvial basal sand overlaid by palaeovalley clay with some coarser grained interbeds. The clay is overlaid by recent Cainozoic material including lacustrine sediment, calcrete, evaporite and aeolian deposits. 

Drill hole Information

·     A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:

·     easting and northing of the drill hole collar

·     elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar

·     dip and azimuth of the hole

·     downhole length and interception depth

·     hole length.

·     If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.

All drillhole test pit and trench details and locations of all data points are presented in Appendices 2 and 3.

 

All holes and test pits are vertical.

Data aggregation methods

·     In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g.  cutting of high grades) and cut-off grades are usually Material and should be stated.

·     Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.

·     The assumptions used for any reporting of metal equivalent values should be clearly stated.

Within the salt-lake extent no low-grade cut-off or high-grade capping has been implemented due to the consistent nature of the brine assay data.

 

No aggregate intercepts have been calculated.

 

 

Relationship between mineralisation widths and intercept lengths

·     These relationships are particularly important in the reporting of Exploration Results.

·     If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.

·     If it is not known and only the downhole lengths are reported, there should be a clear statement to this effect (e.g.  ‘down hole length, true width not known’).

The chemical analysis from each of the test pits has shown the that the brine resource is consistent and continuous through the full thickness of the Lake Playa sediments unit. The unit is flat lying. 

The intersected depth is equivalent to the vertical depth and the thickness of mineralisation.

 

Diagrams

·     Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.

All location maps and sections are contained within the body of the ASX version of this Announcement.

Balanced reporting

·     Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.

All results have been included in the body of the Announcement.

 

Other substantive exploration data

·     Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.

All material exploration data has been reported.

Further work

·     The nature and scale of planned further work (e.g.  tests for lateral extensions or depth extensions or large-scale step-out drilling).

·     Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.

Field trials of brine harvesting will be undertaken.

Additional drilling and testing will be undertaken to upgrade the Inferred and Indicated portions of the resource.

 

 

Section 3 Estimation and Reporting of Mineral Resources

(Criteria listed in section 1, and where relevant in section 2, also apply to this section.)

Criteria

JORC Code explanation

Commentary

Database integrity

·     Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes.

·     Data validation procedures used.

Cross-check of laboratory assay reports and database.

 

Extensive QA/QC as described in the report

Site visits

·     Comment on any site visits undertaken by the Competent Person and the outcome of those visits.

·     If no site visits have been undertaken indicate why this is the case.

A site visit was undertaken by the Competent Person (CP) from 29th to 30th April 2018. The CP visit was documented in Letter Report Salt Lake Potash-18-1-L001 (Groundwater Science, 2018).

 

Geological interpretation

·     Confidence in (or conversely, the uncertainty of ) the geological interpretation of the mineral deposit.

·     Nature of the data used and of any assumptions made.

·     The effect, if any, of alternative interpretations on Mineral Resource estimation.

·     The use of geology in guiding and controlling Mineral Resource estimation.

·     The factors affecting continuity both of grade and geology.

The shallow geological profile beneath the lake is relatively homogenous.  The porosity of the material is consistent with depth; hence the geological interpretation has little impact on the resource except to define its thickness.

The islands are is excluded from the shallow resource estimate as access is not permitted.  Mining the Williamson Pit has resulted in an area of approximately 4km2 being dewatered, this area has also been excluded from the resource estimate.

Confidence in the geological model and the assumptions are described in the Announcement.

Dimensions

·     The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource.

Addressed in the body of the Announcement.

Estimation and modelling techniques

·     The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used.

·     The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data.

·     The assumptions made regarding recovery of by-products.

·     Estimation of deleterious elements or other non-grade variables of economic significance (eg sulphur for acid mine drainage characterisation).

·     In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed.

·     Any assumptions behind modelling of selective mining units.

·     Any assumptions about correlation between variables.

·     Description of how the geological interpretation was used to control the resource estimates.

·     Discussion of basis for using or not using grade cutting or capping.

·     The process of validation, the checking process used, the comparison of model data to drill hole data, and use of reconciliation data if available.

Addressed in the body of the Announcement.

There are no production records for reconciliation.

There are no assumptions made regarding recovery of by-products.

Deleterious elements are Salt (NaCl) waste.  NaCl tonnage has not been estimated.

 

Moisture

·     Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content.

Not applicable to brine resources. See discussion of moisture content under Bulk Density.

Cut-off parameters

·     The basis of the adopted cut-off grade(s) or quality parameters applied.

No cut-off parameters were used.

Mining factors or assumptions

·     Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made.

The Brine resource will be mined by gravity drainage to a network of trenches excavated into the Playa Surface and an array bore bores completed in the paleochannel basal sand. 

 

Validation test work has been completed to confirm the process flowsheet to be used at the Lake Way Project to recovery SOP from the Lake Brine (refer ASX Announcement 31 October 2018).

 

Metallurgical factors or assumptions

·     The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made.

Validation test work has been completed to confirm the process flowsheet to be used at the Lake Way Project to recovery SOP from the Lake Brine (Refer ASX Announcement 31 October 2018).

 

Environmental factors or assumptions

·     Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made.

Environmental impacts are expected to be; localized reduction in saline groundwater level, surface disturbance associated with trench, bore, and pond construction and accumulation of salt tails. The project is in a remote area and these impacts are not expected to prevent project development.

The project is located with the Goldfields Groundwater Proclamation Area. A license to take groundwater will be required under the Rights in Water and Irrigation Act 1914.  This Act is administered by the Government of Western Australia Department of Water and Environmental Regulation.

 

Bulk density

·     Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples.

·     The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit.

·     Discuss assumptions for bulk density estimates used in the evaluation process of the different materials.

Bulk density is not relevant to brine resource estimation.

Volumetric moisture content or volumetric porosity was applied in the resource estimate as follows:

Lake Bed Sediment: determined

Paleovalley Sediment: Assumed

Paleochannel Basal Sand: Assumed

Classification

·     The basis for the classification of the Mineral Resources into varying confidence categories.

·     Whether appropriate account has been taken of all relevant factors (ie relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data).

·     Whether the result appropriately reflects the Competent Person’s view of the deposit.

Classification of the mineral resources into varying confidence categories is described in detail in the report.

The result reflects the view of the Competent Person.

Audits or reviews

·     The results of any audits or reviews of Mineral Resource estimates.

No audit or reviews were undertaken.

Discussion of relative accuracy/ confidence

·     Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate.

·     The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used.

·     These statements of relative accuracy and confidence of the estimate should be compared with production data, where available.

Relative accuracy and confidence of the estimate is described in detail in the body of the Announcement.

The estimated tonnage represents the in-situ brine with no recovery factor applied. It will not be possible to extract all of the contained brine by pumping from trenches. The amount which can be extracted depends on many factors including the permeability of the sediments, the drainable porosity, and the recharge dynamics of the aquifers.

No production data are available for comparison.

 

This information is provided by RNS, the news service of the London Stock Exchange. RNS is approved by the Financial Conduct Authority to act as a Primary Information Provider in the United Kingdom. Terms and conditions relating to the use and distribution of this information may apply. For further information, please contact rns@lseg.com or visit www.rns.com.

END

Salt Lake Potash Limited (SO4) announces interim results for the half-year

AIM and ASX listed company Salt Lake Potash Limited (“SO4” or the “Company”), announces its interim results for the half-year ended 31 December 2018.

 

The full version of the Interim Financial Report can be viewed at www.saltlakepotash.com.au.

OPERATING AND FINANCIAL REVIEW

The Company is focussed on rapidly progressing the development of its Lake Way Project, intended to be the first salt-lake brine Sulphate of Potash (SOP) production operation in Australia. Lake Way’s location and logistical advantages make it the ideal location for the Company’s first SOP operation.

The Company’s long term plan is to develop an integrated SOP operation, producing from a number (or all) of its nine salt lakes.  Salt Lake Potash will progressively explore each of the lakes with a view to estimating resources for each lake, and determining the development potential. Exploration of the lakes will be prioritised based on likely transport costs, scale, permitting pathway and brine chemistry.

HIGHLIGHTS

Highlights during and subsequent to the half-year ended 31 December 2018 included:

Key Appointments Enhance Senior Project Development Team

  • Highly regarded mining executive Tony Swiericzuk commenced as Managing Director and Chief Executive Officer of Salt Lake Potash effective 5 November 2018
  • Three proven mining executives join Salt Lake Potash as leaders in the project development team:
    • Peter Cardillo as Project Director – Processing and NPI
    • Lloyd Edmunds as Project Director – Civil
    • Stephen Cathcart as Project Director – Technical
  • These appointments, along with other recent additions to the project execution team, bring diversified technical/studies, approvals, construction, operations and process infrastructure experience to the Company as it moves into rapid project development phase

Key Approval Obtained and Construction of Lake Way Ponds Commences

  • Mining Proposal and Project Management Plans for the First Phase of the Lake Way Evaporation Ponds (Lake Way Ponds) approved by the Department of Mines, Industry Regulation and Safety (DMIRS)
  • Approval received from Department of Water and Environmental Regulation (DWER) for construction and operation of the Lake Way Ponds and de-watering of the Williamson Pit
  • Site support infrastructure is in place and construction of the Lake Way Ponds has now commenced

Native Title Land Access and Exploration Agreement Executed for Lake Way

  • Salt Lake Potash and Tarlka Matuwa Piarku (Aboriginal Corporation) RNTBC (TMPAC) have entered into a Native Title Land Access and Exploration Agreement for Lake Way
  • TMPAC consent was received for the on-lake construction of the pond system for the dewatering of the Williamson Pit at Lake Way (Lake Way Ponds)
  • ‘Whole of Lake’ Resource Program for Lake Way Advancing
  • Work well advanced to enable the Company to report a Mineral Resource Estimate for the lake bed brine and the paleochannel aquifer for the 100% owned Salt Lake tenements
  • ‘Whole of Lake’ Mineral Resource Estimate will enable the Company to examine larger production scenarios

Field Trials at Lake Way Confirm Salt Production Process

  • Comprehensive field evaporation trials at Lake Way are successfully producing substantial volumes of potassium Harvest Salts validating the modelled salt production process
  • Field evaporation trials have produced over 2 tonnes of high grade Harvest Salts at Lake Way
  • Over 100,000l of brine from both high grade Lake Way playa brine and the super high-grade Williamson Pit brine have been extracted for the field trial and evaporated separately. Both brines have rapidly produced quality harvest salts amenable for conversion to Sulphate of Potash (SOP)
  • Potassium Harvest Salts produced from the field trial will be processed at Saskatchewan Research Council (SRC), where a pilot plant will duplicate and refine the Lake Way process flow sheet, as well as producing further product samples for offtake partners

LAKE WAY PROJECT

Lake Way is located in the Northern Goldfields Region of Western Australia, less than 15km south of Wiluna. The surface area of the Lake is over 270km2.

Salt Lake Potash holds five Exploration Licences (two granted and three under application) covering most of Lake Way and select areas off-lake, including the paleochannel defined by previous exploration. The northern end of the Lake is largely covered by a number of Mining Leases, held by Blackham Resources Limited (Blackham), the owner of the Wiluna Gold Mine.

The Company’s Memorandum of Understanding with Blackham (see ASX Announcement dated 12 March 2018) allows for an expedited path to development at Lake Way.

Lake Way has a number of compelling advantages which make it an ideal site for Salt Lake Potash’s initial SOP operation, including:

Ø Utilisation of Blackham’s existing infrastructure (including camps, power and maintenance) to accelerate development.

Ø The site has excellent freight solutions, being adjacent to the Goldfields Highway, which is permitted for heavy haulage, quad trailer road trains to the railhead at Leonora and then direct rail access to both Esperance and Fremantle Ports, or via other heavy haulage roads to Geraldton Port.

Ø The Goldfields Gas Pipeline is adjacent to Salt Lake Potash’s tenements, running past the eastern side of the Lake.

Ø Access to Blackham’s existing Mining Leases provides advanced permitting pathway for early development activity, including the construction of the Williamson Ponds.

Ø Salt Lake Potash will construct the Williamson Ponds and dewater the existing Williamson Pit on Lake Way. The pit contains an estimated 1.2GL of brine at the exceptional grade of 25kg/m3 of SOP. This brine is the ideal starter feed for evaporation ponds, having already evaporated from the normal Lake Way brine grade, which averages over 14kg/m3.

Ø The high grade brines at Lake Way will result in lower capital and operating costs due to lower extraction and evaporation requirements.

Ø The presence of clays in the upper levels of the lake which are amenable to low cost, on-lake evaporation pond construction.

The Company is concurrently progressing the construction of the First Phase of the Lake Way Evaporation Ponds (Lake Way Ponds), whilst also rapidly advancing a ‘whole of lake’ scenario, including mineral resource estimates, permitting and approvals, pilot plant process testwork and assessment of infrastructure and logistical options.

Discussions are also ongoing with a number of offtake partners and the pilot plant process testwork currently underway will provide high-grade SOP product samples for testing by these partners.

Having completed a placement to raise $13.0 million during the period and built a team with the capability and track record of successfully developing and constructing numerous resource projects, the Company is well placed to take advantage of the benefits of the Lake Way Project and its broader portfolio of nine salt lakes.

Approvals Advancing

The Company’s Mining Proposal and Project Management Plans for the first phase of the Lake Way Ponds were approved by Department of Mines, Industry Regulation and Safety (DMIRS) during the period, and subsequent to the period end, the Company also received approval from Department of Water and Environmental Regulation (DWER) for the Part V works approval for construction and operation of the Lake Way Ponds and de-watering of the Williamson Pit.  These works include the construction of operational scale evaporation ponds and associated infrastructure including pond trenching to provide brine conditioning to manage the brine extracted from the Williamson Pit.

Salt Lake Potash has previously received environmental approval from the DMIRS to construct ponds totalling up to 133Ha (the Williamson Ponds), as well as ancillary infrastructure.

The Lake Way Ponds will be the first operational scale SOP evaporation ponds built on a salt lake in Australia – an important part of the staged de-risking and development at Lake Way and across the Company’s portfolio of salt lakes in the Northern Goldfields Region.

A series of studies commenced during the period in support of the ongoing environmental approvals. These include flora and fauna surveys, climatology and hydrologic assessment, flood modelling and geotechnical investigations.

Native Title Land Access and Exploration Agreement

In December 2018, the Company signed a Native Title Land Access and Brine Minerals Exploration Agreement (the Agreement) with Tarlka Matuwa Piarku (Aboriginal Corporation) RNTBC (TMPAC) covering the Lake Way Project area.

TMPAC entered into the Agreement with Salt Lake Potash on behalf of the Wiluna People who are the recognised Native Title Holders of the land covering the Lake Way Project area. TMPAC also provided consent for the total area required for the construction and operation of the Williamson Ponds.

The signing of the Agreement with TMPAC and receipt of TMPAC’s consent for the Williamson Ponds is a major milestone in the development of the Lake Way Project and positions Salt Lake Potash to accelerate the works program for the Williamson Ponds.

Mineral Resource Program

The Company reported a maiden Mineral Resource Estimate for Lake Way (Blackham tenements only) in July 2018.

Total Mineral Resource Estimate (Blackham tenements only)  

Sediment Hosted Brine – Indicated (94%)

Playa Area

Lakebed Sediment Volume

Brine Concentration

Mineral Tonnage Calculated from Total Porosity

Mineral Tonnage Calculated from Drainable Porosity

K

Mg

SO4

Total Porosity

Brine Volume

SOP Tonnage

Drainable Porosity

Brine Volume

SOP Tonnage

(km2)

(Mm3)

(kg/m3)

(kg/m3)

(Kg/m3)

(Mm3)

(kt)

(Mm3)

(kt)

55.4

290

6.9

7.6

28.3

0.43

125

1,900

0.11

31.9

490

Williamson Pit Brine – Measured (6%)

Brine Volume (Mm3)

Potassium Conc.   (kg/m3)

Magnesium Conc.   (kg/m3)

Sulphate Conc.
(kg/m3)

SOP Tonnage (kt)

1.26

11.4

14.47

48

32

Work progressed during the period to enable the Company to estimate a ‘whole of lake’ Mineral Resource Estimate, including the remaining playa surface covered by Salt Lake Potash’s tenements and the paleochannel aquifer, which were not considered as part of the initial Mineral Resource estimate and provide significant short term upside to increase resources at Lake Way.

Estimation of a ‘whole of lake’ resources will enable the Company to consider larger production scenarios for Lake Way.

Civil Construction – On-Lake Infrastructure

During the period, the Company progressed on-lake development with completion of the detailed design for the first phase of Lake Way Evaporation Ponds (Lake Way Ponds) that will enable the dewatering of the high grade Lake Way Williamson Pit brine. This early works program will allow the fast-tracking of harvest salts in readiness for process plant commissioning.

Detailed engineering works during the period for the Lake Way Ponds included further analysis of strength and permeability characteristics of lakebed sediments, and geotechnical parameters for final pond analysis and design. Other geotechnical design work undertaken included Cone Penetration Test (CPT) data analysis, trafficability assessment, access road analysis, seepage models, borrow pit assessments and development of the pond construction methodology.

Surveying contractor, AAM Group set out the Williamson Pond design in readiness for construction commencement and also completed the Light Detection and Ranging (LiDAR) topographical survey flyover for the larger ‘whole of lake’ scenario.

The Company mobilised initial construction equipment to Lake Way in December 2018, with site support infrastructure at Lake Way installed enabling an immediate start on the construction works. 

Salt Lake Potash is undertaking a wet hire and self-perform model for the construction of the Lake Way Ponds. This construction model allows a fast track mobilisation and execution of the works, whilst providing the Company with critical hands on experience allowing testing and validating of all design criteria to de-risk the future on-lake construction.

The construction of the initial Lake Way ponds is planned to be completed by the end of Q2 2019. The de-watering of the 1.2GL of Williamson Pit brine is expected to commence towards the end of Q2 2019.

The Company has also sort Expressions of Interest (EOI) from key civil contractors to participate in an Early Contractor Involvement (ECI) process for the larger ‘whole of lake’ development. To date, the Company has received positive feedback and acceptance from a number of major civil contractors.

Process Testwork

Comprehensive field evaporation trials at Lake Way continued to successfully produce substantial volumes of potassium Harvest Salts validating the modelled salt production process.

The Lake Way Site Evaporation Trial (SET) was established in May/June 2018 and initial brine feed was gradually introduced from both the Williamson Pit and the Lake Way playa. 

The Lake Way SET has already produced over 2 tonnes of Potassium Harvest Salts (1.8 tonnes Lake Way Playa and 0.4 tonnes of Williamson Pit) and a further 5 tonnes are forecast to be harvested during ongoing evaporation trials.

From the test work to date, the Williamson Pit and the Lake Way Playa brines have produced excellent high grade Harvest Potassium Salts with an exceptional K grade of up to 10% and an overall high average K grade of 6.8%. This aligns very well with the grades that were observed during the Lake Wells SET’s.

This provides the Company with confidence that the Lake Way production model, process flowsheet and Harvest Salt product will produce a final high grade SOP product in line with the world leading SOP product of 53% K2O produced at Lake Wells.

The Company has engaged the world’s leading potash processing laboratory, Saskatchewan Research Council (SRC), to establish a pilot plant based on the process flow sheet for the Lake Way Project. The initial batch of harvest salts from Lake Way has been delivered to SRC and testwork is underway.

The pilot plant will validate and refine the Lake Way process flowsheet and also produce high-grade SOP product samples for offtake partners.

CORPORATE

During the period, the Company completed a placement to existing and new institutional and sophisticated investors in Australia and overseas for 31.0 million new ordinary shares of the Company, to raise gross proceeds of $13,000,000 (Placement).

The cornerstone investor for the Placement was a significant international investment fund. Directors and senior management subscribed for a total of 2.4 million shares in the Placement, including 950,000 shares by the CEO, Mr Tony Swiericzuk, and 750,000 shares by the Company’s Chairman, Mr Ian Middlemas, which were issued in January 2019 following shareholder approval.

Proceeds from the Placement are being used to fund construction of the Lake Way Ponds and dewatering of the Williamson Pit, as well as ongoing development of on-lake infrastructure, exploration and feasibility studies, and general working capital.

Having successfully raised the funds for project development at Lake Way, the Company significantly accelerated its activity and expenditure.

Results of Operations

Net loss after tax for the half year ended 31 December 2018 was $5,809,606 (31 December 2017: $5,354,804).

(i)         Exploration and evaluation expenses were $4,696,515 (31 December 2017: $4,549,568), which is attributable to the Group’s accounting policy of expensing exploration and evaluation expenditure incurred by the Group subsequent to the acquisition of the rights to explore and up to the final investment decision to commence construction for each separate area of interest; and

(ii)        Business development expenses increased to $481,343 (31 December 2017: $374,784) which is attributable to additional business development and investor relations activities required to support the growth and development of the Lake Way Project and the Company’s broader portfolio of Lakes.

 

Financial Position

At 31 December 2018, the Company had cash reserves of $12.0 million (30 June 2018: $5.7 million) and net assets of $13.5 million (30 June 2018: $7.0 million). The Company is in a financial position to conduct its current and planned exploration and development activities.

SIGNIFICANT POST BALANCE DATE EVENTS

Other than as disclosed below, at the date of this report there were no significant events occurring after balance date requiring disclosure.

On 9 January 2019, the Company successfully completed the final tranche of its $13,000,000 capital raising. The final tranche has resulted in 750,000 shares being issued to Chairman Mr Ian Middlemas and 950,000 shares being issued to CEO Mr Tony Swiericzuk at $0.42 following shareholder approval on 20 December 2018. These funds will contribute to the construction of the Williamson Ponds and dewatering of the Williamson Pit, as well as ongoing development of on-lake infrastructure, exploration and feasibilities studies, and general working capital.

AUDITOR’S INDEPENDENCE DECLARATION

Section 307C of the Corporations Act 2001 requires our auditors, Ernst & Young, to provide the directors of Salt Lake Potash Limited with an Independence Declaration in relation to the review of the half year financial report. This Independence Declaration is attached to and forms part of this Directors’ Report. 

Signed in accordance with a resolution of the Directors.

TONY SWIERICZUK

CEO & Managing Director

14 March 2019

 

Competent Persons Statement

The information in this announcement that relates to Process Testwork Results is extracted from the report entitled ‘Field Trials at Lake Way Confirm Salt Production Process’ dated 29 January 2019. This announcement is available to view on www.saltlakepotash.com.au. The information in the original ASX Announcement that related to Process Testwork Results was based on, and fairly represents, information compiled by Mr Bryn Jones, BAppSc (Chem), MEng (Mining) who is a Fellow of the AusIMM. Mr Jones is a Director of Salt Lake Potash Limited. Mr Jones has sufficient experience, which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking, to qualify as a Competent Person as defined in the 2012 Edition of the ‘Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves’. Salt Lake Potash Limited confirms that it is not aware of any new information or data that materially affects the information included in the original market announcement. Salt Lake Potash Limited confirms that the form and context in which the Competent Person’s findings are presented have not been materially modified from the original market announcement.

The information in this Announcement that relates to Mineral Resources is extracted from the report entitled ‘Scoping Study for Low Capex, High Margin Demonstration Plant at Lake Way’ dated 31 July 2018. This announcement is available to view on www.saltlakepotash.com.au. The information in the original ASX Announcement that related to Mineral Resources was based on, and fairly represents, information compiled by Mr Ben Jeuken, who is a member Australian Institute of Mining and Metallurgy and a member of the International Association of Hydrogeologists. Mr Jeuken is employed by Groundwater Science Pty Ltd, an independent consulting company. Mr Jeuken has sufficient experience, which is relevant to the style of mineralisation and type of deposit under consideration and to the activity, which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the ‘Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves’. Salt Lake Potash Limited confirms that it is not aware of any new information or data that materially affects the information included in the original market announcement and, in the case of estimates of Mineral Resources, that all material assumptions and technical parameters underpinning the estimates in the relevant market announcement continue to apply and have not materially changed. Salt Lake Potash Limited confirms that the form and context in which the Competent Person’s findings are presented have not been materially modified from the original market announcement.

 

DIRECTORS’ DECLARATION

 

In the opinion of the Directors of Salt Lake Potash Limited:

1.     the interim consolidated financial statements comprising the statement of profit or loss and other comprehensive income, statement of financial position, statement of cash flows, statement of changes in equity and notes set out on pages 13 to 21 are in accordance with the Corporations Act 2001 including:

 

i)              giving a true and fair view of the financial position of the consolidated entity as at 31 December 2018 and of its performance and cash flows for the six months ended on that date; and

 

ii)             complying with Australian Accounting Standard AASB 134 Interim Financial Reporting and Corporations Regulations 2001; and

 

2.     there are reasonable grounds to believe that the Company will be able to pay its debts as and when they become due and payable.

 

Signed in accordance with a resolution of Directors:

 

 

TONY SWIERICZUK

CEO & Managing Director

 

14 March 2019

 

CONSOLIDATED STATEMENT OF PROFIT

OR LOSS AND OTHER COMPREHENSIVE INCOME

FOR THE HALF YEAR ENDED 31 DECEMBER 2018

 

31 December 2018

31 December 2017

Notes

$

$

Finance income

38,800

145,705

Research and development rebate

456,709

Exploration and evaluation expenses

(4,696,515)

 (4,549,568)

Corporate and administrative expenses

(626,786)

 (448,894)

Business development expenses

(481,343)

 (374,784)

Share based payments expenses

(43,762)

 (583,972)

Loss before tax

(5,809,606)

(5,354,804)

Income tax expense

Loss for the period

(5,809,606)

(5,354,804)

Other comprehensive income

Items that may be reclassified subsequently to profit or loss:

Exchange differences arising during the period

Other comprehensive (loss)/ income for the period, net of tax

Total comprehensive loss for the period

(5,809,606)

(5,354,804)

Basic and diluted loss per share attributable to the ordinary equity holders of the company (cents per share)

(3.18)

(3.10)

 

The above Consolidated Statement of Profit or Loss and other Comprehensive Income
should be read in conjunction with the accompanying notes.

 

 

CONSOLIDATED STATEMENT OF

FINANCIAL POSITION

AS AT 31 DECEMBER 2018

 

Notes

 

31 December
2018
$

 

30 June
2018
$

ASSETS

Current Assets

Cash and cash equivalents

12,028,224

5,709,446

Trade and other receivables

211,633

227,273

Total Current Assets

12,239,857

5,936,719

Non-Current Assets

Security deposits

65,583

Property, plant and equipment

601,155

535,344

Exploration and evaluation expenditure

3

2,276,736

2,276,736

Total Non-Current Assets

2,943,474

2,812,080

TOTAL ASSETS

15,183,331

8,748,799

LIABILITIES

Current Liabilities

Trade and other payables

1,470,984

1,620,527

Finance lease

11,829

11,829

Provisions

4

103,827

57,462

Total Current Liabilities

1,586,640

1,689,818

Non-Current Liabilities

Finance lease

33,077

38,992

Provisions

4

24,327

Total Non-Current Liabilities

57,404

38,992

TOTAL LIABILITIES

1,644,044

1,728,810

NET ASSETS

13,539,287

7,019,989

EQUITY

Contributed equity

5

135,205,595

123,501,153

Shares to be issued

6

715,000

Reserves

7

2,015,348

2,105,886

Accumulated losses

(124,396,656)

(118,587,050)

TOTAL EQUITY

13,539,287

7,019,989

The above Consolidated Statement of Financial Position should be read in conjunction with the accompanying notes.

 

 

CONSOLIDATED STATEMENT

OF CHANGES IN EQUITY

FOR THE HALF YEAR ENDED 31 DECEMBER 2018

 

 

 

 

 

CONSOLIDATED

Contributed Equity
$

Share- Based Payment Reserve
$

 

 

Shares to be Issued
$

Accumulated Losses
$

Total Equity
$

Balance at 1 July 2018

123,501,153

2,105,886

(118,587,050)

7,019,989

Net loss for the period

(5,809,606)

(5,809,606)

Total comprehensive loss for the period

(5,809,606)

(5,809,606)

Transactions with owners, recorded directly in equity

Shares issued from placement

12,285,000

715,000

13,000,000

Shares issued in lieu of fees

134,300

134,300

Share based payment expense

(90,538)

(90,538)

Share issue costs

(714,858)

(714,858)

Balance at 31 December 2018

135,205,595

2,015,348

715,000

(124,396,656)

13,539,287

Balance at 1 July 2017

123,484,561

821,824

(107,259,942)

17,046,443

Net loss for the period

(5,354,804)

(5,354,804)

Total comprehensive loss for the period

(5,354,804)

(5,354,804)

Transactions with owners, recorded directly in equity

Shares issued in lieu of fees

18,476

18,476

Share based payment expense

583,972

583,972

Share issue costs

(1,884)

(1,884)

Balance at 31 December 2017

123,501,153

1,405,796

(112,614,746)

12,292,203

 

The above Consolidated Statement of Changes in Equity should be read in conjunction with the accompanying notes.

 

 

CONSOLIDATED STATEMENT OF

CASH FLOWS

FOR THE HALF YEAR ENDED 31 DECEMBER 2018

31 December

2018
$

31 December

2017
$

Cash flows from operating activities

Payments to suppliers and employees

(5,768,638)

 (5,594,353)

Research and development rebate received

 456,709

Exploration investment scheme received

30,000

Interest received

52,851

133,705

Net cash outflow from operating activities

(5,715,787)

 (4,973,939)

Cash flows from investing activities

Payments for property, plant and equipment

(244,662)

 (83,030)

Net cash outflow from investing activities

(244,662)

 (83,030)

Cash flows from financing activities

Finance lease payments

(5,914)

Proceeds from the issue of shares

13,000,000

Transaction costs from the issue of shares

(714,858)

(40,222)

Net cash inflow/(outflow) from financing activities

12,279,228

(40,222)

Net increase/(decrease) in cash and cash equivalents held

6,318,778

(5,097,191)

Cash and cash equivalents at the beginning of the half year

5,709,446

15,596,759

Cash and cash equivalents at the end of the half year

12,028,224

10,499,568

The above Consolidated Statement of Cash Flows should be read in conjunction with the accompanying notes.

 

 

NOTES TO THE FINANCIAL STATEMENTS

FOR THE HALF YEAR ENDED 31 DECEMBER 2018

 

1.       SUMMARY OF SIGNIFICANT ACCOUNTING POLICIES

(a)        Statement of Compliance

 

The interim condensed consolidated financial statements of the Group for the half year ended 31 December 2018 were authorised for issue in accordance with the resolution of the directors on 7 March 2019.

 

The interim condensed consolidated financial statements for the half year reporting period ended 31 December 2018 have been prepared in accordance with Accounting Standard AASB 134 Interim Financial Reporting and the Corporations Act 2001.

 

This half year financial report does not include all the notes of the type normally included in an annual financial report.  Accordingly, this report is to be read in conjunction with the annual report of Salt Lake Potash Limited for the year ended 30 June 2018 and any public announcements made by Salt Lake Potash Limited and its controlled entities during the half year reporting period in accordance with the continuous disclosure requirements of the Corporations Act 2001.

(b)        Basis of Preparation of Half Year Financial Report

 

The financial statements have been prepared on an accruals basis and are based on historical cost. All amounts are presented in Australian dollars.

 

The interim condensed consolidated financial statements for the half year have been prepared on a going concern basis which assumes the continuity of normal business activity and the realisation of assets and the settlement of liabilities in the ordinary course of business.

For the half year ended 31 December 2018, the Consolidated Entity incurred a net loss of $5,809,606 (31 December 2017: $5,354,804) and experienced net cash outflows from operating and investing activities of $5,960,449 (2017: $5,056,969). As at 31 December 2018, the Group had cash and cash equivalents of $12,028,224 (30 June 2018: $5,709,446) and net current assets of $10,653,217 (2017: $4,246,901).

The Company is rapidly progressing the development of the Lake Way Project and plans to raise additional funding, which may include debt and/or equity, within the next 12 months to fund these activities. The Company has sufficient funds to meet currently committed expenditure but in order to progress development and construction, it requires additional funds.

The Directors are confident that they will be able to raise additional funding as and when required to enable the Consolidated Entity to meet its obligations as and when they fall due, and have been involved in a number of recent successful capital raisings to fund development activities for the Company and other listed resource companies. Accordingly, they consider that it is appropriate to prepare the financial statements on the going concern basis.

Should the Consolidated Entity be unable to raise additional funding as and when required, uncertainty would exist that may cast doubt on the ability of the Consolidated Entity to continue as a going concern. These consolidated financial statements do not include any adjustments relating to the recoverability and classification of recorded asset amounts, or to the amounts and classification of liabilities that might be necessary should the Consolidated Entity be unable to continue as a going concern.

(c)        New Accounting Standards

 

In the current period, the Group has adopted all of the new and revised standards, interpretations and amendments that are relevant to its operations and effective for annual reporting periods beginning on or after 1 July 2018. The adoption of new and revised standards and amendments has not affected the amounts reported for the current or prior half-year periods, however the Company has set out below the main changes due to the adoption of AASB 9.

 

AASB 9 Financial Instruments

 

The Company has adopted AASB 9 from 1 July 2018 which have resulted in changes to accounting policies and the analysis for possible adjustments to amounts recognised in the Interim Financial Reports. In accordance with the transitional provisions in AASB 9, the reclassifications and adjustments are not reflected in the balance sheet as at 30 June 2018 but recognised in the opening balance sheet as at 1 July 2018. As per the new impairment model introduced by AASB 9, the Company has not recognised a loss allowance on trade and other receivables.

 

i)              Classification and Measurement

 

On 1 July 2018, the Company has assessed which business models apply to the financial instruments held by the Company and have classified them into the appropriate AASB 9 categories. The main effects resulting from this reclassification are shown in the table below.

On adoption of AASB 9, the Company classified financial assets and liabilities as subsequently measured at either amortised cost or fair value, depending on the business model for those assets and on the asset’s contractual cash flow characteristics. There were no changes in the measurement of the Company’s financial instruments.

 

There was no impact on the statement of comprehensive income or the statement of changes in equity on adoption of AASB 9 in relation to classification and measurement of financial assets and liabilities.

 

The following table summarises the impact on the classification and measurement of the Group’s financial instruments at 1 July 2018:

 

Presented in statement of financial position

Financial Asset

AASB 139

AASB 9

Reported $

Restated $

Cash and cash equivalents

Bank deposits

Loans and receivables

Amortised Cost

No change

No change

Trade and other receivables/payables

Loans and receivables

Loans and receivables

Amortised Cost

No change

No change

 

 

ii)             Impairment

 

AASB 9 introduces a new expected credit loss (“ECL”) impairment model that requires the Company to adopt an ECL position across the Company’s financial assets at 1 July 2018. The Company’s receivables balance consists of GST refunds from the Australian Tax Office and interest receivables from recognised Australian banking institutions. While cash and cash equivalents are also subject to the impairment requirements of AASB 9, an impairment loss would be considered immaterial.

 

The loss allowances for financial assets are based on the assumptions about risk of default and expected loss rates. The Company uses judgement in making these assumptions and selecting the inputs to the impairment calculation, based on the Company’s past history, existing market conditions as well as forward looking estimates at the end of each reporting period. Given the Company’s receivables are from the Australian Tax Office and recognised Australian banking institutions, the Company has assessed that the risk of default is minimal and as such, no impairment loss has been recognised against these receivables as at 31 December 2018.

 

The Group has not early adopted any other standard, interpretation or amendment that has been issued but is not yet effective.

 

(d)        Issued Standards and Interpretations not early adopted

 

Australian Accounting Standards and Interpretations that have recently been issued or amended but are not yet effective have not been adopted by the Company for the reporting period ended 31 December 2018. Those which may be relevant to the Company are set out below, and are not expected to have any significant impact on the Company’s financial statements.

 

AASB 16 Leases

 

AASB 16 Leases will replace existing accounting requirements for leases under AASB 117 Leases. Under current requirements, leases are classified based on their nature as either finance leases which are recognised on the Statement of Financial Position, or operating leases, which are not recognised on the Statement of Financial Position.

 

Under AASB 16 Leases, the Company’s accounting for operating leases as a lessee will result in the recognition of a right-of-use (ROU) asset and an associated lease liability on the Statement of Financial Position. The lease liability represents the present value of future lease payments, with the exception of short-term and low value leases. An interest expense will be recognised on the lease liabilities and a depreciation charge will be recognised for the ROU assets. There will also be additional disclosure requirements under the new standard.

 

The Company will initially apply AASB 16 on 1 July 2019, using the modified retrospective approach. Therefore, the cumulative effect of adopting AASB 16 will be recognised as an adjustment to the opening balance of retained earnings at 1 July 2019, with no restatement of comparative information.

 

When applying the modified retrospective approach to leases previously classified as operating leases under AASB 117, the Company can elect, on a lease-by-lease basis, whether to apply a number of practical expedients on transition. The Company is assessing the potential impact of using these practical expedients.

 

The Company is yet to complete its assessment of the impact of AASB 16, however given the limited number of leases it has at 31 December 2018, the impact is not expected to be significant. The actual impact of applying AASB 16 on the financial statements in the period of initial application will depend however on future economic conditions, including the Company’s borrowing rate, the composition of the Company’s lease portfolio, the extent to which the Company elects to use practical expedients and recognition exemptions, and the new accounting policies, which are subject to change until the Company presents its first financial statements that include the date of initial application.

 

2.       OPERATING SEGMENTS

AASB 8 requires operating segments to be identified on the basis of internal reports about components of the Consolidated Entity that are regularly reviewed by the chief operating decision maker in order to allocate resources to the segment and to assess its performance.

 

The Consolidated Entity operates in one segment, being mineral exploration. This is the basis on which internal reports are provided to the Directors for assessing performance and determining the allocation of resources within the Consolidated Entity.

 

3.       EXPLORATION AND EVALUATION

31 December

2018
$

30 June

 2018
$

(a)             Areas of Interest

SOP Project

2,276,736

2,276,736

Carrying amount at end of period 1

2,276,736

2,276,736

(b)             Reconciliation

Carrying amount at start of period

2,276,736

2,276,736

Impairment losses

Carrying amount at end of period 1

2,276,736

2,276,736

 

Note:

1 The ultimate recoupment of costs carried forward for exploration and evaluation is dependent on the successful development and commercial exploitation or sale of the respective areas of interest.

SOP Project

Salt Lake holds a number of large salt lake brine projects (Projects) in Western Australia and the Northern Territory, each having potential to produce highly sought after Sulphate of Potash (SOP) for domestic and international fertiliser markets.

 

4.       PROVISIONS

31 December

2018
$

30 June

 2018
$

(a)             Current Liabilities – Provisions

Onerous lease

67,607

Annual leave

36,220

57,462

Total Current Liabilities

103,827

57,462

(b)             Non-Current Liabilities

 

Onerous lease

24,327

Total Non-Current Liabilities

24,327

 

Onerous lease

During the period, the Company relocated its head office to accommodate a larger work force as the Company rapidly pursues development of the Lake Way Project. Due to this, a pre-existing lease is currently vacant as the Company considers options to sublet the leasehold area. The Company has recognised a Provision for Onerous Lease over the remaining term of the lease contract as identified above, less the amount the Company expects to receive through sub-letting.

 

5.       CONTRIBUTED EQUITY

31 December

2018
$

30 June

 2018
$

(a)   Share Capital

204,568,200 (30 June 2018:175,049,596) Ordinary Shares

135,205,595

123,501,153

135,205,595

123,501,153

(b)   Movement in Share Capital during the past six months

 

Number of Ordinary Shares

Issue Price

$

$

1 Jul 18

Opening Balance

175,049,596

123,501,153

16 Nov 18

Placement

29,035,714

0.42

12,195,000

20 Nov 18

Placement

214,286

0.42

90,000

31 Dec 18

Share issue1

268,604

0.50

134,300

Nov 18 to Dec 18

Placement costs

(714,858)

31 Dec 18

Closing balance

204,568,200

135,205,595

Note:

1.   Issued to employees and consultants of the Company in lieu of fees.

 

6.       SHARES TO BE ISSUED

31 December

2018
$

30 June

 2018
$

Shares to be issued

715,000

715,000

 

The Company completed the second tranche of a placement on 9 January 2019 with the issue of shares to Directors of the Company following shareholder approval. Shares to be issued represents the subscriptions funds received in respect of the placement before the balance date.

 

7.       RESERVES

Notes

31 December

2018
$

30 June

 2018
$

Share-based payment reserve

7(a)

2,015,348

2,105,886

2,015,348

2,105,886

 

(a)   Movement in share-based payment reserve during the past six months

 

Date

Details

Number of Performance Rights

Number of Performance Shares

Number of Unlisted Options

$

1 Jul 18

Opening Balance

5,400,000

22,500,000

4,400,000

2,105,886

2 Nov 18

Issue of Performance Rights

7,266,258

2 Nov 18

Issue of Incentive Options

5,000,000

31 Dec 18

Issue of Performance Rights

10,781,258

31 Dec 18

Issue of Incentive Options

2,450,000

31 Dec 18

Cancellation/Expiry of Performance Rights

(2,352,500)

(984,383)

31 Dec 18

Expiry of Performance Shares

(5,000,000)

Jul – Dec 18

Share Based Payments Expense

893,845

31 Dec 2018

Closing Balance

21,095,016

17,500,000

11,850,000

2,015,348

 

8.       SHARE-BASED PAYMENTS

For the six months end 31 December 2018, the Group recognised $43,762 in share-based payments expenses in the statement of profit or loss (31 December 2017: $583,972) following the issue of shares to employees and consultants in lieu of payment of remuneration and fees totalling $134,300, and expensing the fair value of equity instruments (options and performance rights) over the vesting period totalling $893,845. This expense was partially offset by the expiry/cancellation of unvested performance rights and performance shares totalling ($984,383).

(a)   Options

 

During the current period 7,450,000 incentive options were granted consisting of 5,000,000 granted on 2 November 2018 (Series 1 – Series 3) and 2,450,000 granted on 31 December 2018 (Series 4 – Series 6). The fair value of the equity-settled incentive options granted is estimated as at the date of grant using the Binomial option valuation model taking into account the terms and conditions upon which the options were granted.

Inputs

Series 1

Series 2

Series 3

Exercise price

$0.60

$1.00

$1.20

Grant date share price

$0.470

$0.470

$0.470

Dividend yield 1

Volatility 2

70%

70%

70%

Risk-free interest rate

2.32%

2.32%

2.32%

Grant date

2-Nov-18

2-Nov-18

2-Nov-18

Expiry date

1-Nov-23

1-Nov-23

1-Nov-23

Expected life of option 3

5.00 years

5.00 years

5.00 years

Fair value at grant date

$0.253

$0.200

$0.181

 

Inputs

Series 4

Series 5

Series 6

Exercise price

$0.60

$1.00

$1.20

Grant date share price

$0.460

$0.460

$0.460

Dividend yield 1

Volatility 2

70%

70%

70%

Risk-free interest rate

2.10%

2.10%

2.10%

Grant date

31-Dec-18

31-Dec-18

31-Dec-18

Expiry date

1-Nov-23

1-Nov-23

1-Nov-23

Expected life of option 3

4.84 years

4.84 years

4.84 years

Fair value at grant date

$0.240

$0.187

$0.169

Notes:

1   The dividend yield reflects the assumption that the current dividend payout will remain unchanged.

2   The expected volatility reflects the assumption that the historical volatility is indicative of future trends, which may not necessarily be the actual outcome.

3   The expected life of the options is based on the expiry date of the options as there is limited track record of the early exercise of options.

(b)   Performance Rights

 

During the current period 18,047,516 performance rights were granted consisting of 7,266,258 granted on 2 November 2018 (Series 1 – Series 5) and 10,781,258 granted on 31 December 2018 (Series 6 – Series 15). The fair value of performance rights granted is estimated as at the date of grant based on the underlying share price. The table below lists the inputs to the valuation model used for the performance rights granted by the Group:

Inputs

Series 1

Series 2

Series 3

Series 4

Series 5

Milestones

Short Term Incentive

Trench/Pond Construction

Plant Construction

Plant Commissioning

Nameplate Capacity

Exercise price

Grant date share price

$0.470

$0.470

$0.470

$0.470

$0.470

Grant date

2-Nov-18

2-Nov-18

2-Nov-18

2-Nov-18

2-Nov-18

Expiry date

31-Jul-19

1-Nov-20

1-Nov-21

1-Nov-22

1-Nov-23

Expected life 1

0.74 years

2.00 years

3.00 years

4.00 years

5.00 years

Fair value at grant date 2

$0.470

$0.470

$0.470

$0.470

$0.470

 

Inputs

Series 6

Series 7

Series 8

Series 9

Series 10

Milestones

Short Term Incentive

Trench/Pond Construction

Plant Construction

Plant Commissioning

Nameplate Capacity

Exercise price

Grant date share price

$0.460

$0.460

$0.460

$0.460

$0.460

Grant date

31-Dec-18

31-Dec-18

31-Dec-18

31-Dec-18

31-Dec-18

Expiry date

31-Jul-19

1-Nov-20

1-Nov-21

1-Nov-22

1-Nov-23

Expected life 1

0.58 years

1.84 years

2.84 years

3.84 years

4.84 years

Fair value at grant date 2

$0.460

$0.460

$0.460

$0.460

$0.460

Inputs

Series 11

Series 12

Series 13

Series 14

Series 15

Milestones

Advanced Schedule

Reduced Capex

Lake Way Application

Lake Wells Application

Financing Milestone

Exercise price

Grant date share price

$0.460

$0.460

$0.460

$0.460

$0.460

Grant date

31-Dec-18

31-Dec-18

31-Dec-18

31-Dec-18

31-Dec-18

Expiry date

31-Dec-21

31-Dec-21

31-Dec-19

31-Dec-20

30-Jun-20

Expected life 1

3.00 years

3.00 years

1.00 years

2.00 years

1.50 years

Fair value at grant date 2

$0.460

$0.460

$0.460

$0.460

$0.460

 

Notes:
1  The expected life of the Performance Rights is based on the expiry date of the performance rights as there is limited track record of the early conversion of performance rights.
2  The fair value of Performance Rights granted is estimated as at the date of grant based on the underlying share price (being the closing share price at the date of issuance).

9.       COMMITMENTS AND CONTINGENCIES

Management have identified the following material commitments for the consolidated group as at 31 December 2018:

31 December

 2018

30 June

 2018

$

$

Finance lease commitments

Within one year

11,829

11,829

Later than one year but not later than five years

33,077

38,992

44,906

50,821

Operating lease commitments

Within one year

408,184

200,018

Later than one year but not later than five years

374,011

113,419

782,195

313,437

Exploration commitments

Within one year

3,817,500

1,896,500

Later than one year but not later than five years

3,817,500

1,896,500

 

10.     DIVIDENDS PAID OR PROVIDED FOR

No dividend has been paid or provided for during the half year ended 31 December 2018 (31 December 2017: nil).

 

11.     FINANCIAL INSTRUMENTS

Fair Value Measurement

 

At 31 December 2018, the Group had no material financial assets and liabilities that are measured at fair value on a recurring basis and at 31 December 2018, the carrying amount of financial assets and financial liabilities for the Group is considered to approximate their fair values. 

 

12.     SUBSEQUENT EVENTS AFTER BALANCE DATE

Other than as disclosed below, at the date of this report there were no significant events occurring after balance date requiring disclosure.

 

On 9 January 2019, the Company successfully completed the final tranche of its $13,000,000 capital raising. The final tranche has resulted in 750,000 shares being issued to Chairman Mr Ian Middlemas and 950,000 shares being issued to CEO Mr Tony Swiericzuk at $0.42 following shareholder approval on 20 December 2018. These funds will contribute to the construction of the Williamson Ponds and dewatering of the Williamson Pit, as well as ongoing development of on-lake infrastructure, exploration and feasibilities studies, and general working capital.

 

 

 

The full version of the Interim Financial Report for the Half-Year Ended 31 December 2018 Report is available on the Company’s website at www.saltlakepotash.com.au

 

 

For further information please visit www.saltlakepotash.com.au or contact:

Tony Swierizcuk/Clint McGhie

Salt Lake Potash Limited

Tel: +61 8 6559 5800

Jo Battershill

Salt Lake Potash Limited

Tel: +44 (0) 20 7478 3900

Colin Aaronson/Richard Tonthat/Ben Roberts

Grant Thornton UK LLP (Nominated Adviser)

Tel: +44 (0) 20 7383 5100

Derrick Lee/Beth McKiernan

Cenkos Securities plc (Joint Broker)

Tel: +44 (0) 131 220 6939

Jerry Keen/Toby Gibbs

Shore Capital (Joint Broker)

Tel: +44 (0) 20 7468 7967

 

 

This information is provided by RNS, the news service of the London Stock Exchange. RNS is approved by the Financial Conduct Authority to act as a Primary Information Provider in the United Kingdom. Terms and conditions relating to the use and distribution of this information may apply. For further information, please contact rns@lseg.com or visit www.rns.com.

END

IR GLGDXLUBBGCS

Potash a “critical mineral” – MiningNewsNet

A great read from , labelling Potash a “critical mineral”.

We have all been going gaga in recent months over critical minerals such as lithium and cobalt but MiningNewsNet have importantly drawn attention to Potash as another critical mineral worthy of attention. Potash refers to mined and manufactured salts that contain potassium in water-soluble form. The mineral is critical thanks to it’s use as a fertiliser in crop production

In food production, potassium is removed from the soil in harvested crops and must be replaced in order to maintain future crop growth. Sulphate of Potash (SOP) is the premium source of potassium (macro-nutrient) favoured by high value, chloride intolerant crops.

Read the full story here:  

Salt Lake Potash #SO4 – Field trials at Lake Way confirm Salt production process

Salt Lake Potash #SO4 – Field trials at Lake Way confirm Salt production process

 

Highlights:

  • Comprehensive field evaporation trials at Lake Way are successfully producing substantial volumes of potassium Harvest Salts validating the modelled salt production process.
  • Field evaporation trials have to date produced over 2 tonnes of high grade Harvest Salts at Lake Way.
  • Over 100,000l of brine from both high grade Lake Way playa brine and the super high-grade Williamson Pit brine have been extracted for the field trial and evaporated separately. Both brines have rapidly produced quality harvest salts amenable for conversion to Sulphate of Potash (SOP).
  • Potassium Harvest Salts produced from the field trial will be processed at Saskatchewan Research Council (SRC), where a pilot plant will duplicate and refine the Lake Way process flow sheet, as well as producing further product samples for offtake partners.

Salt Lake Potash Limited (Salt Lake Potash or the Company) is pleased to announce successful progress from the Lake Way Site Evaporation Trials (Lake Way SET)

The Company is focused on rapidly progressing the development of the Lake Way Project to become the first Sulphate of Potash (SOP) production operation in Australia. Lake Way has the highest grade SOP brine resource in Australia and the best infrastructure solution of potential Australian brine SOP producers.

A major component of the feasibility study process for the Lake Way Project is to develop a brine evaporation and salt production model based on the brine chemistry of both Lake Way playa and Williamson Pit brines under local environmental (evaporation) conditions.

Initially, this model was based on a computer simulation generated by international brine processing experts Ad Infinitum, from known brine chemistry (from assays) and comprehensive public weather datasets. In this case the model was also informed by the Company’s unique database of more than 18 months of field evaporation trials at Lake Wells, reflecting similar chemistry and environmental inputs.

In the second stage of the model development the computer simulation was calibrated against and updated for the results of wind tunnel evaporation tests of Lake Way brines under laboratory conditions.

Thirdly, the model is now being further refined by establishing a site evaporation trial, where a scaled down version of an evaporation pond system is established on site and brine is evaporated under actual field conditions. Both brine chemistry and salt production are closely monitored.

The Lake Way SET was established in May/June 2018 and initial brine feed was gradually introduced from both the Williamson Pit (SOP resource grade 25kg/m3) and the Lake Way playa (SOP resource grade 14kg/m3) (refer Note 1 for full mineral resource estimate).  

Over 100,000 litres of Williamson Pit and the Lake Way Playa brine has been fed into the SET pond system to date.

Brine is sourced from a surface trench, for the Lake Way Playa brine, or direct from the Williamson Pit and introduced into a Halite Pond. As solar evaporation concentrates the brine, it progresses through a series of 5 ponds: two halite salt ponds, and then schoenite, kainite and carnallite salt ponds.

Harvested salt and brine samples are analysed at regular intervals through the evaporation process to gather data for model correlation. To date over 400 samples have been extracted and assayed at Bureau Veritas in Perth.

Refer to Figures 4 and 5 in the ASX version of this Announcement available on the Company’s website (www.saltlakepotash.com.au) which set out the results from the Lake Way SET to date, demonstrating an excellent correlation to the salt production model.

This provides the Company with a very strong basis to continue development of the mass balance model and process flow sheet for the Lake Way Project.

It was found that halite salts begin to form almost immediately upon initial evaporation of the Williamson Pit brine. This will shorten the overall salt production timeframe for the Williamson Pit brine. It may also offer the opportunity for faster construction of harvest pond infrastructure, utilising harvested halite salts for pavement.  

The Lake Way SET has already produced over 2 tonnes of Potassium Harvest Salts (1.8 tonnes Lake Way Playa and 0.4 tonnes of Williamson Pit) and a further 5 tonnes are forecast to be harvested during ongoing evaporation trails.

From the test work to date, the Williamson Pit and the Lake Way Playa brines have produced excellent high grade Harvest Potassium Salts with an exceptional K grade of up to 10% and an overall high average K grade of 6.8%. This aligns very well with the grades that were observed during the Lake Wells SET’s.

This provides the Company with confidence that the Lake Way production model, process flowsheet and Harvest Salt product will produce a final high grade SOP product in line with the world leading SOP product of 53% K2O produced at Lake Wells.

Process Plant Flow Sheet Validation

The Company has engaged the world’s leading potash processing laboratory, Saskatchewan Research Council (SRC), to establish a pilot plant based on the process flow sheet for the Lake Way Project. The initial batch of harvest salts from Lake Way has been delivered to SRC and testwork is underway.

The pilot plant will validate and refine the Lake Way process flowsheet and also produce high-grade SOP product samples for offtake partners. 

Salt Lake Potash’s Chief Executive Officer, Mr Tony Swiericzuk said: “I am very pleased with the continued development progress the project team is achieving at Lake Way. The initial salt harvest from the Lake Way SET is a significant milestone. It validates our production model and allows us to refine the process parameters for plant design, as well as providing feed for the pilot plant. In parallel with the progress of plant design, rapid project development continues with site access construction underway and the whole of lake resource definition well advanced.”

 

                 For further information please visit www.saltlakepotash.com.au or contact:

 

Tony Swiericzuk/Clint McGhie

Salt Lake Potash Limited

Tel: +61 8 9322 6322

Jo Battershill

Salt Lake Potash Limited

Tel: +44 (0) 20 7478 3900

Colin Aaronson/Richard Tonthat/Ben Roberts

Grant Thornton UK LLP (Nominated Adviser)

Tel: +44 (0) 20 7383 5100

Derrick Lee/Beth McKiernan

Cenkos Securities plc (Joint Broker)

Tel: +44 (0) 131 220 6939

Jerry Keen/Toby Gibbs

Shore Capital (Joint broker)

Tel: +44 (0) 20 7468 7967

 

 

Note 1: Lake Way Mineral Resource Estimate (Blackham tenements only)  

Sediment Hosted Brine – Indicated (94%)

Playa Area

Lakebed Sediment Volume

Brine Concentration

Mineral Tonnage Calculated from Total Porosity

Mineral Tonnage Calculated from Drainable Porosity

K

Mg

SO4

Total Porosity

Brine Volume

SOP Tonnage

Drainable Porosity

Brine Volume

SOP Tonnage

(km2)

(Mm3)

(kg/m3)

(kg/m3)

(Kg/m3)

(Mm3)

(kt)

(Mm3)

(kt)

55.4

290

6.9

7.6

28.3

0.43

125

1,900

0.11

31.9

490

 

Williamson Pit Brine – Measured (6%)

Brine Volume (Mm3)

Potassium Conc.   (kg/m3)

Magnesium Conc.   (kg/m3)

Sulphate Conc.
(kg/m
3)

SOP Tonnage (kt)

1.26

11.4

14.47

48

32

Work is currently underway to enable the Company to report a Mineral Resource Estimate for the lake bed brine and the paleochannel aquifer for the ‘whole of lake’, which will enable the Company to examine larger production options.

 

Competent Person Statement

The information in this report that relates to Process Testwork Results is based on, and fairly represents, information compiled by Mr Bryn Jones, BAppSc (Chem), MEng (Mining) who is a Fellow of the AusIMM. Mr Jones is a Director of Salt Potash Limited. Mr Jones has sufficient experience, which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking, to qualify as a Competent Person as defined in the 2012 Edition of the ‘Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves’. Mr Jones consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

The information in this Announcement that relates to Mineral Resources is extracted from the report entitled ‘Scoping Study for Low Capex, High Margin Demonstration Plant at Lake Way’ dated 31 July 2018. This announcement is available to view on www.saltlakepotash.com.au. The information in the original ASX Announcement that related to Mineral Resources was based on, and fairly represents, information compiled by Mr Ben Jeuken, who is a member Australian Institute of Mining and Metallurgy and a member of the International Association of Hydrogeologists. Mr Jeuken is employed by Groundwater Science Pty Ltd, an independent consulting company. Mr Jeuken has sufficient experience, which is relevant to the style of mineralisation and type of deposit under consideration and to the activity, which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the ‘Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves’. Salt Lake Potash Limited confirms that it is not aware of any new information or data that materially affects the information included in the original market announcement and, in the case of estimates of Mineral Resources, that all material assumptions and technical parameters underpinning the estimates in the relevant market announcement continue to apply and have not materially changed. Salt Lake Potash Limited confirms that the form and context in which the Competent Person’s findings are presented have not been materially modified from the original market announcement.

 

 

Appendix A: JORC Table One

Section 1: Sampling Techniques and Data

Criteria

JORC Code explanation

Commentary

Sampling techniques

·     Nature and quality of sampling (e.g.  cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as downhole gamma sondes, or handheld XRF instruments, etc.).  These examples should not be taken as limiting the broad meaning of sampling.

·     Include reference to measures taken to ensure sample presentively and the appropriate calibration of any measurement tools or systems used.

·     Aspects of the determination of mineralisation that are Material to the Public Report.

·     In cases where ‘industry standard’ work has been done, this would be relatively simple (e.g.  ‘reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay’).  In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems.  Unusual commodities or mineralisation types (e.g.  submarine nodules) may warrant disclosure of detailed information.

Sampling involved extraction of small, representative samples of brine from solar ponds into 50ml or 250ml clean bottles. The solar ponds consist of re-purposed temporary above-ground swimming pools and HDPE aquaculture tubs.  These solar ponds were filled with brine drawn from either the Williamson Pit directly or from Lake Way Playa Brine from a 4m deep test pit excavated next to the trial.

Brine samples were taken from each solar evaporation pond regularly and routinely during the solar evaporation process.

Brine samples were taken manually by initially rinsing out the sample bottle with brine from the source then filling the bottle. Samples were analysed for K, Mg, Ca, Na, Cl, SO4, TDS and specific gravity.

The temperature and pressure in each pond were logged electronically with piezometers.

Once the brine in a particular solar pond had concentrated to pre-determined point it was pumped to another solar pond downstream in the process. Salt was then extracted from the drained solar pond. Harvested salt is then crushed, either by hand or using a small jaw crusher to 100% passing 25mm, where the typical particle size is <5mm. The crushed salt was then coned and quartered multiple times until a 250g representative salt sample was obtained.

Brine is a homogenous fluid below the surface, while salt samples are cone and quartered to provide a homogenous sample.

Drilling techniques

·     Drill type (e.g.  core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g.  core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.).

No drilling was undertaken during the site evaporation trial.

 

 

Drill sample recovery

·     Method of recording and assessing core and chip sample recoveries and results assessed.

·     Measures taken to maximise sample recovery and ensure representative nature of the samples.

·     Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.

No core was recovered from the site evaporation trial.

Brine samples taken from the ponds, were sampled from beneath the surface of the ponds, thus were representative of the entire pond as the ponds are small enough to act as a homogeneous liquid bodies.

Salt samples were crushed, coned and quartered to ensure sample representativeness. The crushing and homogenisation lowers the risk of preferential loss/gain of one size fraction over another.

Logging

·     Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.

·     Whether logging is qualitative or quantitative in nature.  Core (or costean, channel, etc.) photography.

·     The total length and percentage of the relevant intersections logged.

No logging was undertaken on the site evaporation trial

 

Sub-sampling techniques and sample preparation

·     If core, whether cut or sawn and whether quarter, half or all core taken.

·     If non-core, whether riffled, tube sampled, rotary split, etc.  and whether sampled wet or dry.

·     For all sample types, the nature, quality and appropriateness of the sample preparation technique.

·     Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.

·     Measures taken to ensure that the sampling is representative of the insitu material collected, including for instance results for field duplicate/second-half sampling.

·     Whether sample sizes are appropriate to the grain size of the material being sampled.

Not applicable, no drilling was undertaken during the site evaporation trial.

Not applicable, no drilling was undertaken during the site evaporation trial.

The samples were taken in sterile plastic bottles of 50ml or 250ml capacity. Brine is a homogenous fluid below the surface, while salt is cone and quartered to homogenise and sample.

Brine was diluted (1:10 in de-ionised water) at the lab to ensure accurate determination by ICP.

Salt was crushed to <25mm and homogenising to ensure that the 200-300g subsample taken is representative for the grain size. 50g of the wet homogenised sample is air dried at ambient temperature and sent for XRD. Following this the sample is crushed with a mortar and pestle to <120um. It is then packed into a pellet to undergo XRD analysis.

10g of the wet homogenised sample is air dried at ambient temperature. Residual moisture is determined by acetone-displacement wash followed by drying at a temperature of 60 degrees Celsius. Following this drying, the salt sample is dissolved in 100ml of de-ionised water, and is sent for ICP analysis.

Quality of assay data and laboratory tests

·     The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.

·     For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.

·     Nature of quality control procedures adopted (e.g.  standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e.  lack of bias) and precision have been established.

The brine and salt samples were sent to Bureau Veritas (BV) Laboratories in Perth, WA. ICP and XRD preparation undertaken at BV.

ICP analysis to determine the chemical ion analysis, and wet chemistry titration to determine chloride content was performed by Bureau Veritas, Canning Vale, WA.

Sub samples prepared at BV were sent for XRD analysis to determine the salt crystal mineralogy at Microanalysis in Perth, WA.

No laboratory analysis was undertaken with geophysical tools.

All BV laboratories work to documented procedures compliant with ISO 9001 Quality Management Systems. Rigorous quality control and quality assurance measures are applied throughout the entire process in their laboratories.

Standard quality assurance procedures include:

• Analysis of blanks within each batch.

• The routine testing of suitable certified reference materials from national and international suppliers, in addition to in-house and client supplied standards. Standards will be selected based on the elements of interest, expected range of concentration, and the analytical method used.

• Duplicate samples are included in each batch to ensure that reproducible results are being achieved. Duplicate samples may be solutions, pulps or coarse splits as requested.

• Re-assay of anomalous results by our quality control staff using techniques considered appropriate for the level of analytes encountered.

• All sample results are reported. All blanks and standards are reported on request.

Microanalysis uses XRD, which is semi-quantitative, as it does not take into account preferred orientation, strain or crystallite size. The amorphous content is estimated using the background ratio rather than an internal spike. All procedures are internally validated. Microanalysis Australia has an established QA/QC system of procedures for receipt, preparation and analysis of samples. All instruments are calibrated monthly with a certified reference standard. They run a calibration check using a certified Panalytical silicon standard monthly and monitor source decay. Repeatability studies have been undertaken to verify subsampling procedures. Every tenth sample is repeated to verify repeatability and consistency of results.

Verification of sampling and assaying

·     The verification of significant intersections by either independent or alternative company personnel.

·     The use of twinned holes.

·     Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.

·     Discuss any adjustment to assay data.

Not applicable, brine is a homogenous fluid below the surface.

Not applicable, brine is a homogenous fluid below the surface.

All sampling and assaying is well documented and contained on SLP’s internal databases.

No adjustments have been made to assay data.

Location of data points

·     Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.

·     Specification of the grid system used.

·     Quality and adequacy of topographic control.

Location data is not relevant for this process test and so was not taken.

 

Data spacing and distribution

·     Data spacing for reporting of Exploration Results.

·     Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.

·     Whether sample compositing has been applied.

Brine samples were taken at appropriate time intervals, either weekly or biweekly, to gain sufficient resolution on the brines’ evaporation pathway.

Salt samples were taken at pre-determined brine concentrations from prior modelling and so are indicative of the salts produced between the pre-determined harvest points.

Sample compositing has not been applied.

Orientation of data in relation to geological structure

·     Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.

·     If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.

Not applicable as harvest salts were homogenised.

Drilling orientation is Not applicable. The entire mass of salt produced by the solar pond was harvested, homogenised and sent for assay.

 

Sample security

·     The measures taken to ensure sample security.

SLP field geologists and engineers were responsible for sampling and homogenising all brine and salt samples prior to shipping to the BV lab in Perth and the SLP lab/warehouse.  The security measures for the material and type of sampling at hand was appropriate.

Audits or reviews

·     The results of any audits or reviews of sampling techniques and data.

Data review is summarised in the report and included an assessment of the quality of assay data and laboratory tests and verification of sampling and assaying.  No audits of sampling techniques and data have been undertaken.

Section 2: Reporting of Exploration Results

Criteria

JORC Code explanation

Commentary

Mineral tenement and land tenure status

·     Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.

·     The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.

On the 9th March 2018 Salt Lake Potash Ltd and Blackham Resources Ltd signed a gold and brine minerals memorandum of understanding.  Under this MOU Blackham has granted the brine rights on its Lake Way tenement free from encumbrances to SLP.

The tenements referred to in the MOU are; Exploration licences E53/1288, E53/1862, E53/1905, E53/1952, Mining Licences, M53/121, M53/122, M53/123, M53/147, M53/253, M53/796, M53/797, M53/798, M53/910, and Prospecting Licences P53/1642, P53/1646, P53/1666, P53/1667, P53/1668.

All tenure is granted to Blackham Resources Ltd.

Exploration done by other parties

·     Acknowledgment and appraisal of exploration by other parties.

No prior process (solar evaporation) test work has been undertaken on the brine from Williamson Pit or Lake Way Playa.

The Company has previously reported a brine resource over the Blackham tenements – refer ASX Announcement 31 July 2018.

There is a database of approximately 6200 boreholes across Lake Way of which some 1000 are within the Blackham tenements.  The primary source for the information is the publicly available Western Australian Mineral Exploration (WAMEX) report data base.

Recent sterilisation drilling has also been undertaken by Blackham Resources.

The data from previous exploration work by other parties has not been used in appraising the results of the process testwork included in this announcement.

Geology

·     Deposit type, geological setting and style of mineralisation.

The deposit is a salt-lake brine deposit.

The lake setting is typical of a Western Australian palaeovalley environment. Ancient hydrological systems have incised palaeovalleys into Archaean basement rocks, which were then infilled by Tertiary-aged sediments typically comprising a coarse-grained fluvial basal sand overlaid by palaeovalley clay with some coarser grained interbeds. The clay is overlaid by recent Cainozoic material including lacustrine sediment, calcrete, evaporite and aeolian deposits.

The brine is concentrated in solar evaporation ponds and the salt is precipitated into the evaporation ponds as fine (0.5 – 5mm) crystals that form a single, homogeneous salt bed.

Drill hole Information

·     A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:

·     easting and northing of the drill hole collar

·     elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar

·     dip and azimuth of the hole

·     downhole length and interception depth

·     hole length.

·     If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.

No drilling was undertaken.  Williamson pit brine was drawn from the bottom of the pit ramp. Lake brine is sourced from a pit next to the site evaporation trial with the following coordinates (26°46’25.55″S, 120°18’27.46″E)

 

Data aggregation methods

·     In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g.  cutting of high grades) and cut-off grades are usually Material and should be stated.

·     Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.

·     The assumptions used for any reporting of metal equivalent values should be clearly stated.

Harvested salt from the solar evaporation ponds are homogenised, assayed weighed to provide the estimated grade.

Average salt grade for each evaporation trial is determined by a weighted average, where the grade/mineralogy of each individual harvest is multiplied by the total wet mass of the harvest. The sum of these harvest grades is then divided by the total salt output from the pond.

Relationship between mineralisation widths and intercept lengths

·     These relationships are particularly important in the reporting of Exploration Results.

·     If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.

·     If it is not known and only the downhole lengths are reported, there should be a clear statement to this effect (e.g.  ‘down hole length, true width not known’).

Not applicable to process testwork.

 

Diagrams

·     Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.

Maps and sections not included for process testwork. Refer prior ASX Announcement dated 31 July 2018.

Balanced reporting

·     Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.

All results have been included in the body of the report.

 

Other substantive exploration data

·     Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.

All material process data has been reported.

Further work

·     The nature and scale of planned further work (e.g.  tests for lateral extensions or depth extensions or large-scale step-out drilling).

·     Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.

Field evaporation trials are ongoing.

Downstream metallurgical test work on harvested salts will be undertaken by a world leading potash research laboratory to confirm the harvest salts may be converted to potash product.

 

 

Salt Lake Potash #SO4 – Completion of Placement, Directors’ Holdings & Mobilisation of Equipment to Lake Way

Salt Lake Potash Limited (“the Company”) is pleased to announce that it has now completed the placement of 31.0 million new ordinary shares of the Company, to raise gross proceeds of A$13.0 million (“Placement”), first announced on 9 November 2018.  

The second tranche of the Placement has been completed following shareholder approval at a General Meeting held on 20 December 2018. The issue comprised 1,702,381 ordinary shares of no par value at a price of A$0.42 per share, including 952,381 shares subscribed for by the CEO, Mr Tony Swiericzuk, and 750,000 shares by the Company’s Chairman, Mr Ian Middlemas.

Proceeds from the Placement will be used to fund the construction of the Williamson Ponds and dewatering of the Williamson Pit, as well as ongoing development of on-lake infrastructure, exploration and feasibility studies, and general working capital.

Funds from the Placement have enabled the mobilisation of construction equipment to Lake Way, with preliminary site preparation works being undertaken in preparation for the imminent construction of the Williamson Ponds and dewatering of the Williamson Pit.

Application has been made to the AIM Market of the London Stock Exchange (“AIM”) for the admission of the 1,702,381 Ordinary Shares, which rank pari passu with the Company’s existing issued Ordinary Shares, to be admitted to trading. Dealings on AIM are expected to commence at 8:00am on or around 10 January 2019 (“Admission”).

An Appendix 3B and Section 708A Notice are attached as required under the listing rules of the ASX.

Total Voting Rights

For the purposes of the Financial Conduct Authority’s Disclosure Guidance and Transparency Rules (“DTRs”), following Admission, Salt Lake will have 206,270,581 Ordinary Shares in issue with voting rights attached. Salt Lake holds no shares in treasury. This figure of 206,270,581 may be used by shareholders in the Company as the denominator for the calculations by which they will determine if they are required to notify their interest in, or a change to their interest in the Company, under the ASX Listing Rules or the DTRs.

Directors’ interests

Following the issue of these shares, the directors will have the following interests in shares:

 

Number of shares

Percentage of issued share capital

Ian Middlemas

11,750,000

5.70%

Tony Swiericzuk

952,381

0.46%

Mr Swiericzuk also holds an indirect interest in 5 million incentive options and 7,266,258 performance rights.

For further information please visit www.saltlakepotash.com.au or contact:

 

Tony Swierizcuk/Clint McGhie

Salt Lake Potash Limited

Tel: +61 8 9322 6322

Jo Battershill

Salt Lake Potash Limited

Tel: +44 (0) 20 7478 3900

Colin Aaronson/Richard Tonthat/Ben Roberts

Grant Thornton UK LLP (Nominated Adviser)

Tel: +44 (0) 20 7383 5100

Derrick Lee/Beth McKiernan

Cenkos Securities plc (Joint Broker)

Tel: +44 (0) 131 220 6939

Jerry Keen/Toby Gibbs

Shore Capital (Joint broker)

Tel: +44 (0) 20 7468 7967

 

 

Rule 2.7, 3.10.3, 3.10.4, 3.10.5

Appendix 3B

New issue announcement,

application for quotation of additional securities

and agreement

Information or documents not available now must be given to ASX as soon as available.  Information and documents given to ASX become ASX’s property and may be made public.

Introduced 01/07/96  Origin: Appendix 5  Amended 01/07/98, 01/09/99, 01/07/00, 30/09/01, 11/03/02, 01/01/03, 24/10/05, 01/08/12, 04/03/13

 

Name of entity

 SALT LAKE POTASH LIMITED

ABN

 98 117 085 748

We (the entity) give ASX the following information.

Part 1 ‑ All issues

You must complete the relevant sections (attach sheets if there is not enough space).

1

+Class of +securities issued or to be issued

Ordinary Shares

2

Number of +securities issued or to be issued (if known) or maximum number which may be issued

1,702,381

3

Principal terms of the +securities (e.g. if options, exercise price and expiry date; if partly paid +securities, the amount outstanding and due dates for payment; if +convertible securities, the conversion price and dates for conversion)

Fully paid ordinary shares

 

4

Do the +securities rank equally in all respects from the +issue date with an existing +class of quoted +securities?

If the additional +securities do not rank equally, please state:

·    the date from which they do

·    the extent to which they participate for the next dividend, (in the case of a trust, distribution) or interest payment

·    the extent to which they do not rank equally, other than in relation to the next dividend, distribution or interest payment

Yes

 

5

Issue price or consideration

$0.42



6

Purpose of the issue

(If issued as consideration for the acquisition of assets, clearly identify those assets)

Proceeds from the issue will be used to fund construction of the Williamson Ponds and dewatering of the Williamson Pit, as well as ongoing development of on-lake infrastructure, exploration and feasibility studies, and general working capital.



6a

Is the entity an +eligible entity that has obtained security holder approval under rule 7.1A?

If Yes, complete sections 6b – 6h in relation to the +securities the subject of this Appendix 3B, and comply with section 6i

Yes



6b

The date the security holder resolution under rule 7.1A was passed

30 November 2018



6c

Number of +securities issued without security holder approval under rule 7.1

Nil

 



6d

Number of +securities issued with security holder approval under rule 7.1A

Nil



6e

Number of +securities issued with security holder approval under rule 7.3, or another specific security holder approval (specify date of meeting)

1,702,381

 



6f

Number of +securities issued under an exception in rule 7.2

Nil



6g

If +securities issued under rule 7.1A, was issue price at least 75% of 15 day VWAP as calculated under rule 7.1A.3?  Include the +issue date and both values.  Include the source of the VWAP calculation.

Not Applicable

 



6h

If +securities were issued under rule 7.1A for non-cash consideration, state date on which valuation of consideration was released to ASX Market Announcements

Not Applicable



6i

Calculate the entity’s remaining issue capacity under rule 7.1 and rule 7.1A – complete Annexure 1 and release to ASX Market Announcements

7.1 – 27,935,268

7.1A – 20,578,769

7

+Issue dates

Note: The issue date may be prescribed by ASX (refer to the definition of issue date in rule 19.12).  For example, the issue date for a pro rata entitlement issue must comply with the applicable timetable in Appendix 7A.

Cross reference: item 33 of Appendix 3B.

9 January 2019

Number

+Class

8

Number and +class of all +securities quoted on ASX (including the +securities in section 2 if applicable)

206,270,581

Ordinary Shares

Number

+Class

9

Number and +class of all +securities not quoted on ASX (including the +securities in section 2 if applicable)

 

 

 

7,500,000

 

10,000,000

 

750,000

 

 

750,000

 

 

1,000,000

 

 

250,000

 

 

500,000

 

 

750,000

 

 

400,000

 

 

1,700,000

 

 

 

2,750,000

 

 

 

3,000,000

 

 

 

21,095,016

 

Class B Performance Shares

 

Class C Performance Shares

 

Incentive Options exercise price $0.40, expiry date 29 April 2019

 

Incentive Options exercise price $0.50, expiry date 29 April 2020

 

Incentive Options exercise price $0.60, expiry date 29 April 2021

 

Incentive Options exercise price $0.40, expiry date 30 June 2021

 

Incentive Options exercise price $0.50, expiry date 30 June 2021

 

Incentive Options exercise price $0.60, expiry date 30 June 2021

 

Incentive Options exercise price $0.70, expiry date 30 June 2021

 

Incentive Options exercise price $0.60, expiry date 1 November 2023

 

Incentive Options exercise price $1.00, expiry date 1 November 2023

 

Incentive Options exercise price $1.20, expiry date 1 November 2023

 

Performance rights which are subject to various performance conditions to be satisfied prior to the relevant expiry dates between 31 December 2018 and 1 November 2023

10

Dividend policy (in the case of a trust, distribution policy) on the increased capital (interests)

Not Applicable

Part 2 ‑ Pro rata issue

11

Is security holder approval required?

Not Applicable

12

Is the issue renounceable or non-renounceable?

Not Applicable

13

Ratio in which the +securities will be offered

Not Applicable

14

+Class of +securities to which the offer relates

Not Applicable

15

+Record date to determine entitlements

Not Applicable

 

16

Will holdings on different registers (or subregisters) be aggregated for calculating entitlements?

Not Applicable

17

Policy for deciding entitlements in relation to fractions

Not Applicable

18

Names of countries in which the entity has security holders who will not be sent new offer documents

Note: Security holders must be told how their entitlements are to be dealt with.

Cross reference: rule 7.7.

Not Applicable

19

Closing date for receipt of acceptances or renunciations

Not Applicable

20

Names of any underwriters

Not Applicable

21

Amount of any underwriting fee or commission

Not Applicable

22

Names of any brokers to the issue

Not Applicable

23

Fee or commission payable to the broker to the issue

Not Applicable

24

Amount of any handling fee payable to brokers who lodge acceptances or renunciations on behalf of security holders

Not Applicable

25

If the issue is contingent on security holders’ approval, the date of the meeting

Not Applicable

26

Date entitlement and acceptance form and offer documents will be sent to persons entitled

Not Applicable

27

If the entity has issued options, and the terms entitle option holders to participate on exercise, the date on which notices will be sent to option holders

Not Applicable

28

Date rights trading will begin (if applicable)

Not Applicable

29

Date rights trading will end (if applicable)

Not Applicable

30

How do security holders sell their entitlements in full through a broker?

Not Applicable

31

How do security holders sell part of their entitlements through a broker and accept for the balance?

Not Applicable

32

How do security holders dispose of their entitlements (except by sale through a broker)?

Not Applicable

33

+Issue date

Not Applicable

 

Part 3 ‑ Quotation of securities

You need only complete this section if you are applying for quotation of securities

34

Type of +securities

(tick one)

(a)

+Securities described in Part 1

(b)

All other +securities

Example: restricted securities at the end of the escrowed period, partly paid securities that become fully paid, employee incentive share securities when restriction ends, securities issued on expiry or conversion of convertible securities

 

Entities that have ticked box 34(a)

 

Additional securities forming a new class of securities

Tick to indicate you are providing the information or documents

35

If the +securities are +equity securities, the names of the 20 largest holders of the additional +securities, and the number and percentage of additional +securities held by those holders

36

If the +securities are +equity securities, a distribution schedule of the additional +securities setting out the number of holders in the categories

1 – 1,000

1,001 – 5,000

5,001 – 10,000

10,001 – 100,000

100,001 and over

37

A copy of any trust deed for the additional +securities

 

Entities that have ticked box 34(b)

 

38

Number of +securities for which +quotation is sought

Not Applicable

39

+Class of +securities for which quotation is sought

Not Applicable

40

Do the +securities rank equally in all respects from the +issue date with an existing +class of quoted +securities?

If the additional +securities do not rank equally, please state:

·    the date from which they do

·    the extent to which they participate for the next dividend, (in the case of a trust, distribution) or interest payment

·    the extent to which they do not rank equally, other than in relation to the next dividend, distribution or interest payment

Not Applicable

41

Reason for request for quotation now

Example: In the case of restricted securities, end of restriction period

(if issued upon conversion of another +security, clearly identify that other +security)

Not Applicable

Number

+Class

42

Number and +class of all +securities quoted on ASX (including the +securities in clause 38)

Quotation agreement

1           +Quotation of our additional +securities is in ASX’s absolute discretion.  ASX may quote the +securities on any conditions it decides. 

2          We warrant the following to ASX.

·           The issue of the +securities to be quoted complies with the law and is not for an illegal purpose.

·           There is no reason why those +securities should not be granted +quotation.

·           An offer of the +securities for sale within 12 months after their issue will not require disclosure under section 707(3) or section 1012C(6) of the Corporations Act.

Note: An entity may need to obtain appropriate warranties from subscribers for the securities in order to be able to give this warranty

·           Section 724 or section 1016E of the Corporations Act does not apply to any applications received by us in relation to any +securities to be quoted and that no-one has any right to return any +securities to be quoted under sections 737, 738 or 1016F of the Corporations Act at the time that we request that the +securities be quoted.

·           If we are a trust, we warrant that no person has the right to return the +securities to be quoted under section 1019B of the Corporations Act at the time that we request that the +securities be quoted.

3          We will indemnify ASX to the fullest extent permitted by law in respect of any claim, action or expense arising from or connected with any breach of the warranties in this agreement.

4          We give ASX the information and documents required by this form.  If any information or document is not available now, we will give it to ASX before +quotation of the +securities begins.  We acknowledge that ASX is relying on the information and documents.  We warrant that they are (will be) true and complete.

Sign here:            …………………………………………………..            Date: 9 January 2019

                             (Director/Company secretary)

Print name:         Clint McGhie

== == == == ==

Notice Under Section 708A

Salt Lake Potash Limited (the Company) has today issued 1,702,381 fully paid ordinary shares. The issued shares are part of a class of securities quoted on Australian Securities Exchange (“ASX”). 

The Company hereby notifies ASX under paragraph 708A(5)(e) of the Corporations Act 2001 (Cwth) (the “Act”) that:

1.         the Company issued the securities without disclosure to investors under Part 6D.2 of the Act;

2.         as at the date of this notice, the Company has complied with the provisions of Chapter 2M of the Corporations Act as they apply to the Company, and section 674 of the Act; and

3.         as at the date of this notice, there is no information that is “excluded information” within the meaning of sections 708A(7) and (8) of the Act.

Salt Lake Potash (SO4) – Native Title Land Access and Exploration Agreement Executed for Lake Way. Construction Activities Set to Commence.

Highlights:

  • Salt Lake Potash and Tarlka Matuwa Piarku (Aboriginal Corporation) RNTBC (TMPAC) have entered into a Native Title Land Access and Exploration Agreement for Lake Way
  • TMPAC consent has been received for the on-lake construction of the pond system for the dewatering of the Williamson Pit at Lake Way (Williamson Ponds)
  • Work programs at Lake Way continue to accelerate with construction of the Williamson Ponds expected to commence shortly
  • A ‘whole of lake’ resource definition program is being undertaken to enable larger scale production scenarios to be considered

Salt Lake Potash Limited (Salt Lake Potash or the Company) is pleased to announce it has signed a Native Title Land Access and Brine Minerals Exploration Agreement (the Agreementwith Tarlka Matuwa Piarku (Aboriginal Corporation) RNTBC (TMPAC) covering the Lake Way Project area.

TMPAC have entered into the Agreement with Salt Lake Potash on behalf of the Wiluna People who are the recognised Native Title Holders of the land covering the Lake Way Project area. TMPAC have also provided consent for the total area required for the construction and operation of the Williamson Ponds.

The signing of the Agreement with TMPAC and receipt of TMPAC’s consent for the Williamson Ponds is a major milestone in the development of the Lake Way Project and positions Salt Lake Potash to accelerate the works program for the Williamson Ponds.

Salt Lake Potash’s Chief Executive Officer, Mr Tony Swiericzuk, said:

“It has been a pleasure working with TMPAC to develop an agreement which respects the significance of the area’s heritage and also enables us to progress the Lake Way Project. The signing of the Agreement is a key milestone for construction activities to commence and the Company’s goal of developing the first SOP project within Australia. We look forward to building on the strong working relationship with TMPAC as we progress our plans to develop the Lake Way Project.”

Having signed the Agreement, Salt Lake Potash is looking to accelerate works at Lake Way, including:

1.   Construction of Williamson Ponds – Key contracts in respect of the construction of the Williamson Ponds are in the process of being finalised and construction equipment will be mobilising shortly in preparation for the imminent planned works to begin on the Williamson Ponds at Lake Way. The completion of this work program will result in the construction of Australia’s first commercial scale SOP evaporation ponds.

2.   Resource Definition Program – A maiden Mineral Resource Estimate for Lake Way (Blackham tenements only) was reported in July 2018. Work is currently underway to enable the Company to report a Mineral Resource Estimate for the lake bed brine and the paleochannel aquifer for the ‘whole of lake’, which will enable the Company to examine larger production options. 

 

 For further information please visit www.saltlakepotash.com.au or contact:

Tony Swiericzuk

Salt Lake Potash Limited

Tel: +61 8 9322 6322

Jo Battershill

Salt Lake Potash Limited

Tel: +44 (0) 754 036 6000

Colin Aaronson/Richard Tonthat/Ben Roberts

Grant Thornton UK LLP (Nominated Adviser)

Tel: +44 (0) 20 7383 5100

Derrick Lee/Beth McKiernan

Cenkos Securities plc (Joint Broker)

Tel: +44 (0) 131 220 6939

Jerry Keen/Toby Gibbs

 

Shore Capital (Joint Broker)

Tel: +44 (0) 20 7468 7967

 

 

FORWARD LOOKING STATEMENTS

This announcement may include forward-looking statements. These forward-looking statements are based on Salt Lake’s expectations and beliefs concerning future events. Forward looking statements are necessarily subject to risks, uncertainties and other factors, many of which are outside the control of Salt Lake, which could cause actual results to differ materially from such statements. Salt Lake makes no undertaking to subsequently update or revise the forward-looking statements made in this announcement, to reflect the circumstances or events after the date of that announcement.

 

 

The information contained within this announcement is deemed to constitute inside information as stipulated under the Market Abuse Regulations (EU) No. 596/2014. Upon the publication of this announcement, this inside information is now considered to be in the public domain.

Salt Lake Potash #SO4 – Statement Regarding Online Article

Salt Lake Potash Limited (Salt Lake or the Company) is aware of an online article published by Cube Investments dated 10 November 2018 that includes a number of staged production targets and financial forecast information (including NPVs) for the Company’s Lake Way Project.

In July 2018, the Company completed a Scoping Study on the development of a 50,000tpa sulphate of potash (SOP) Demonstration Plant at Lake Way that supports a low capex, highly profitable, staged development model.

The Company has not reported NPV, IRR or EBITDA in respect of the Demonstration Plant at Lake Way, nor has it completed a Scoping Study (or other feasibility study) for any higher level of production at Lake Way.

The Company advises that it has not paid for, participated in or assisted with the drafting or reviewing of this article. The opinions in the article, including published targets and forecast financial information, are entirely those of the author only and are not endorsed by the Company.

The article was also republished by Brand Communications which is retained by the Company to provide online public and investor relations support. The Company did not approve the republication of the Cube Investments article, nor was it advised that the article would be republished. Investors and shareholders should not rely on the article as the basis for any investment decision in relation to Salt Lake shares.

The Company has requested the immediate removal of the article from the Brand Communications site. The Company will ensure that there are improved procedures in place to ensure that in future all material published on its behalf are approved by the Company.

Investors and shareholders should refer to the Company’s announcements, including the Lake Way Demonstration Plant Scoping Study dated 31 July 2018, when making an assessment of the Company and its projects.

For further information please visit www.saltlakepotash.com.au or contact:

 

Clint McGhie

Salt Lake Potash Limited

Tel: +61 8 9322 6322

Colin Aaronson/Richard Tonthat/Ben Roberts

Grant Thornton UK LLP (Nominated Adviser)

Tel: +44 (0)207 383 5100

Production Target

The Lake Way Demonstration Plant Production Target stated in this report is based on the Company’s Scoping Study as released to the ASX on 31 July 2018. The information in relation to the Production Target that the Company is required to include in a public report in accordance with ASX Listing Rule 5.16 and 5.17 was included in the Company’s ASX Announcement released on 31 July 2018. The Company confirms that the material assumptions underpinning the Production Target referenced in the 31 July 2018 release continue to apply and have not materially changed.

Salt Lake Potash #SO4 announces a A$13.0m Placement to Institutional & Sophisticated Investors to Fund Project Development

Salt Lake Potash Limited (the Company or Salt Lake) is pleased to announce that it has received strong commitments from both existing and new institutional and sophisticated investors in Australia and overseas to subscribe for 31.0 million new ordinary shares of the Company (Ordinary Shares), to raise gross proceeds of $13,000,000 (Placement). There was very strong demand for the Placement, an endorsement of the recent appointment of Tony Swiericzuk as CEO and also of the Company’s world class Sulphate of Potash project.

Proceeds from the Placement will be used to fund construction of the Williamson Ponds and dewatering of the Williamson Pit, as well as ongoing development of on-lake infrastructure, exploration and feasibility studies, and general working capital.

The cornerstone investor for the Placement is a significant international investment fund. Directors and senior management intend to subscribe for a total of 2.4 million shares in the Placement, including 952,381 shares by the CEO, Mr Tony Swiericzuk, and 750,000 shares by the Company’s Chairman, Mr Ian Middlemas, which will be issued subject to shareholder approval.

Commenting on the Placement, SO4’s CEO, Tony Swiericzuk, said: “We are very pleased to have received such strong support from new and existing shareholders to fund the construction of the initial on-lake infrastructure at Lake Way. These activities are on the critical path to enabling SO4 to become the first Australian commercial producer of SOP in a global sector with outstanding potential. This strong support from investors endorses our view that the Goldfields Salt Lakes Project has enormous potential for value creation and we now look forward to rapidly delivering on this potential for all shareholders and stakeholders.”

Argonaut Securities Pty Limited and Canaccord Genuity (Australia) Limited acted as Joint Lead Manager to the Placement.

The issue price of A$0.42 represents a 13.4% discount to the last closing price of $0.485 on ASX.

The Placement will be completed in two tranches as follows:

(a)      29,250,000 shares will be issued on 16 November 2018 under Listing Rule 7.1 (11,745,041 shares) and Listing Rule 7.1A (17,504,959 shares).  Following the issue of these shares the Company will have 7,612,398 remaining issue capacity under Listing Rule 7.1 and no remaining issue capacity under Listing Rule 7.1A.

(b)      1,702,381 shares intended to be subscribed for by Directors will be issued on or about Thursday 20 December 2018 subject to shareholder approval. A notice of general meeting will be sent to shareholders shortly.

Related Party transaction

The proposed participation in the Placement by Tony Swiericzuk, and Ian Middlemas constitutes a related party transaction under Rule 13 of the AIM Rules for Companies. The independent directors, having consulted the Company’s nominated adviser, Grant Thornton UK LLP, consider that the terms of the transaction are fair and reasonable insofar as the Company’s shareholders are concerned.

Settlement and dealings

Application will be made to the AIM Market of the London Stock Exchange (“AIM”) for 29,250,000 Ordinary Shares, pursuant to the Placement, which rank pari passu with the Company’s existing issued Ordinary Shares, to be admitted to trading. Dealings on AIM are expected to commence at 8:00am on or around 16 November 2018 (“Admission”).

Total Voting Rights

For the purposes of the Financial Conduct Authority’s Disclosure Guidance and Transparency Rules (“DTRs”), following Admission, Salt Lake will have 204,299,596 Ordinary Shares in issue with voting rights attached. Salt Lake holds no shares in treasury. This figure of 204,299,596 may be used by shareholders in the Company as the denominator for the calculations by which they will determine if they are required to notify their interest in, or a change to their interest in the Company, under the ASX Listing Rules or the DTRs.

Information required under ASX Listing Rule 3.10.5A:

(a)      Dilution to existing shareholders as a result of the issue under Listing Rule 7.1A is 9.1%, dilution to existing shareholders as a result of the issue under Listing Rule 7.1 is 6.3% and the total dilution to existing shareholders is 14.3%. Details regarding the participation of existing and new shareholders is not able to be determined yet and will be provided at completion;

(b)      The Company will issue 17,504,959 shares under Listing Rule 7.1A because the Placement was considered to be a more efficient mechanism for raising funds. The Placement did not expose the Company to additional costs, a protracted process and market volatility that may have been experienced with a pro-rata issue or other type of issue in which existing ordinary shareholders would have been eligible to participate;

(c)      No underwriting arrangements are in place for the Placement under rule 7.1A; and

(d)      A fee of up to 6% may be paid to the Brokers/Advisors in connection with the Placement under rule 7.1A.

The voluntary halt of trading of the Company’s shares on ASX was lifted prior to the opening of trade on 9 November 2018, following an announcement to the market regarding the above. 

For further information please visit www.saltlakepotash.com.au or contact:

Tony Swiericzuk/Clint McGhie

Salt Lake Potash Limited

Tel: +61 8 9322 6322

Jo Battershill

Salt Lake Potash Limited

Tel: +44 (0) 20 7478 3900

Colin Aaronson/Richard Tonthat/Ben Roberts

Grant Thornton UK LLP (Nominated Adviser)

Tel: +44 (0) 20 7383 5100

Derrick Lee/Beth McKiernan

Cenkos Securities plc (Joint Broker)

Tel: +44 (0) 131 220 6939

Jerry Keen/Toby Gibbs

 

Shore Capital (Joint broker)

Tel: +44 (0) 20 7468 7967

 

Forward Looking Statements

This announcement may include forward-looking statements. These forward-looking statements are based on Salt Lake Potash Limited’s expectations and beliefs concerning future events. Forward looking statements are necessarily subject to risks, uncertainties and other factors, many of which are outside the control of Salt Lake Potash Limited, which could cause actual results to differ materially from such statements. Salt Lake Potash Limited makes no undertaking to subsequently update or revise the forward-looking statements made in this announcement, to reflect the circumstances or events after the date of that announcement. 

The information contained within this announcement is deemed to constitute inside information as stipulated under the Market Abuse Regulations (EU) No. 596/2014. Upon the publication of this announcement, this inside information is now considered to be in the public domain.

Salt Lake Potash (SO4) – September 2018 Quarterly Report and Appendix 5B

The Board of Salt Lake Potash Limited (the Company or SLP) is pleased to present its Quarterly Report for the period ending 30 September 2018.

The Company’s primary focus is progressing the development of the Goldfields Salt Lakes Project (GSLP), intended to be the first salt-lake brine Sulphate of Potash (SOP) production operation in Australia.

Highlights for the quarter and subsequently include:

APPOINTMENT OF MANAGING DIRECTOR / CEO

  • Highly regarded mining executive Tony Swiericzuk appointed as Managing Director and Chief Executive Officer of Salt Lake Potash effective 5 November 2018.
  • Mr Swiericzuk recently spent 9 years with Fortescue Metals Group, including as Director Business Development and Exploration, General Manager Christmas Creek Mine and General Manager Port.
  • Mr Swiericzuk’s initial focus will be the rapid development of Australia’s first SOP operation.

LAKE WAY

Maiden Resource for Lake Way

  • Measured mineral resource estimate of 32,000t SOP for the Williamson Pit Brine. The resource grade of 25kg/m3of SOP is easily the highest grade SOP brine resource in Australia.
  • Indicated resource estimate of 1,900,000t SOP calculated from Total Porosity (Stored) and 490,000t calculated from Drainable Porosity reported for the Blackham Resources tenements.

Scoping Study for Low Capex, High Margin Demonstration Plant

  • The Company completed a Scoping Study on the development of a 50,000tpa SOP Demonstration Plant at Lake Way that supports a low capex, highly profitable, staged development model, with total capital costs of approximately A$49m and average cash operating costs (FOB) of approximately A$387/t.
  • The Demonstration Plant is intended to validate the technical and commercial viability of brine SOP production from the GSLP, providing the basis to build a world class, low cost, long life SOP operation across the 9 lakes in the GSLP.

Process Testwork

  • Completed validation testwork that confirmed the process flowsheet to be used in the Lake Way Demonstration Plant Scoping Study.
  • A bulk field evaporation trial processing both Lake Way and Williamson Pit brine is ongoing, to confirm the modelled evaporation parameters and produce harvest salt samples for SOP production.

Geotechnical Investigations

  • The Company significantly progressed the design of the Williamson Ponds to dewater the Williamson Pit at Lake Way.

Approval to Construct Williamson Ponds

  • The Department of Mines, Industry Regulation and Safety (DMIRS) gave environmental approval for the pond system to dewater the Williamson Pit at Lake Way.

LAKE WELLS

MOU with Australian Potash to study sharing infrastructure and other costs at Lake Wells

  • The Company and Australian Potash Limited (ASX: APC) entered into a Memorandum of Understanding and Co-operation Agreement to undertake a joint study of the potential benefits of development cost sharing for each Company’s projects at Lake Wells.

Granting of Mining Lease

  • The Company’s first Mining Lease at Lake Wells covering 87.4 km2 was granted, a significant milestone in the Project’s development pathway.

LAKE BALLARD

  • A fieldwork programme of 38 test pits was completed over the extent of the lake area.  The test pits enabled geology, brine chemistry and hydraulic parameters to be understood. 
  • Commenced site evaporation trials to confirm pathway for salt production in field conditions.

SOP SAMPLE PRODUCTION

  • SOP granulation testwork produced initial samples for marketing and product quality assessment.
  • Testwork began in SLP’s in-house laboratory to replicate process flowsheet on larger batch scale. 

 

APPOINTMENT OF MANAGING DIRECTOR / CEO

Subsequent to the end of the quarter, the Company appointed Tony Swiericzuk as Managing Director and Chief Executive Officer (CEO), effective 5 November 2018.

Mr Swiericzuk is a Mining Engineer with outstanding credentials as a builder and operator of mining projects, having recently been General Manager of the Christmas Creek Mine from 2012 to 2017. He oversaw the construction, commissioning and ramp-up of this project from 15Mtpa to 60Mtpa in his initial 2 year period, then proceeded to optimise the operation and help drive FMG to become the world’s lowest cost iron ore producer.

In his initial years at FMG Mr Swiericzuk was General Manager Port Operations in Port Hedland and managed the ramp up from 20Mtpa to 60Mtpa from 2009 to 2011.

Mr Swiericzuk has the ideal operating and commercial experience to rapidly deliver on the exceptional potential of the Goldfields Salt Lakes Project (GSLP). The GSLP is a technically advanced, sustainable and highly scalable project to produce sought-after chlorine free fertilisers for the export and domestic markets.

Mr Swiericzuk’s diverse background in large scale logistics operations will be a substantial benefit to the development of the GSLP and he also intends to utilise the tried and proven methods which were essential in making FMG the lowest cost iron ore producer in the world.

Current CEO of the Company, Mr Matthew Syme, was integral to Mr Swiericzuk’s appointment and will remain a director and consultant to the Company, ensuring a seamless handover.

THE GOLDFIELDS SALT LAKES PROJECT

The Company’s long term plan is to develop an integrated SOP operation, producing from a number (or all) of the lakes within the GSLP, after confirming the technical and commercial elements of the Project through construction and operation of a Demonstration Plant producing up to 50,000tpa of SOP.

The GSLP has a number of important, favourable characteristics:

  • Very large paleochannel hosted brine aquifers at each Lake, with chemistry amenable to production of salts by solar evaporation for SOP production, extractable from both low cost trenches and deeper bores;
  • Over 3,300km2 of playa surface, with in-situ clays suitable for low cost on-lake pond construction;
  • Excellent evaporation conditions;
  • Excellent access to transport, energy and other infrastructure in the major Goldfields mining district;
  • Lowest quartile capex and opex potential based on the Lake Wells Scoping Study;
  • Clear opportunity to reduce transport costs by developing lakes closer to infrastructure and by capturing economies of scale;
  • Multi-lake production offers operational flexibility and diversification of risk from localised weather events;
  • The very high level of technical validation already undertaken at Lake Wells substantially applies to the other lakes in the GSLP; and
  • Potential co-product revenues, particularly where transport costs are lowest

Salt Lake Potash will progressively explore the lakes in the GSLP with a view to estimating resources for each Lake, in parallel with the development of the Demonstration Plant. Exploration of the lakes will be prioritised based on likely transport costs, scale, permitting pathway and brine chemistry.

The Company’s Memorandum of Understanding with Blackham Resources Limited (see ASX Announcement dated 12 March 2018) offers the potential for an expedited path to development at Lake Way, possibly the best site for a 50,000tpa Demonstration Plant in Australia.

A Scoping Study on the development of a 50,000tpa SOP Demonstration Plant at Lake Way was completed during the quarter, supporting a low capex, highly profitable, staged development model, with total capital costs of approximately A$49m and average cash operating costs (FOB) of approximately A$387/t.

LAKE WAY

Lake Way is located in the Goldfields region of Western Australia, less than 15km south of Wiluna. The surface area of the Lake is over 270km2.

Salt Lake Potash holds two Exploration Licences (one granted and one under application) covering most of Lake Way, including the paleochannel defined by previous exploration. The northern end of the Lake is largely covered by a number of Mining Leases, held by Blackham Resources Limited (Blackham), the owner of the Wiluna Gold Mine.

The Company entered into a Memorandum of Understanding with Blackham in March 2018 to investigate the development of an SOP operation on Blackham’s existing Mining Leases at Lake Way, including, initially, a 50,000tpa Demonstration Plant.

The Wiluna region is an historic mining precinct dating back to the late 19th century. It has been a prolific nickel and gold mining region with well developed, high quality infrastructure in place.

The Goldfields Highway is a high quality sealed road permitted to carry quad road trains and passes 2km from the Lake. The Goldfields Gas Pipeline is adjacent to SLP’s tenements, running past the eastern side of the Lake.

Lake Way has some compelling advantages which potentially make it an ideal site for an SOP operation, including:

  • Likely substantial capital and operating savings from sharing overheads and infrastructure with the Wiluna Gold Mine, including the accommodation camp, flights, power, maintenance, infrastructure and other costs.
  • The site has excellent potential freight solutions, being adjacent to the Goldfields Highway, which is permitted for heavy haulage, quad trailer road trains to the railhead at Leonora, or via other heavy haulage roads to Geraldton Port.
  • A Demonstration Plant would likely be built on Blackham’s existing Mining Leases.
  • SLP would dewater the existing Williamson Pit on Lake Way, prior to Blackham mining. The pit contains an estimated 1.2GL of brine at the exceptional grade of 25kg/m3 of SOP. This brine is potentially the ideal starter feed for evaporation ponds, having already evaporated from the normal Lake Way brine grade, which averages over 14kg/m3.
  • The high grade brines at Lake Way will result in lower capital and operating costs due to lower extraction and evaporation requirements.
  • There would be substantial savings to both parties from co-operating on exploration activities on each other’s ground.
  • The presence of clays in the upper levels of the lake which should be amenable to low cost, on-lake evaporation pond construction.

Mineral Resource

A maiden Mineral Resource Estimate for Lake Way (Blackham tenements only) was estimated by Groundwater Science Pty Ltd, an independent hydrogeological consultant with substantial salt lake brine expertise.

Areas outside the Blackham tenements at Lake Way, including the remaining playa surface covered by SLP tenements and applications, were not considered as part of the Mineral Resource estimate and provide significant future upside to increase resources at Lake Way.

Table 1: Lake Way Project – Mineral Resource Estimate (JORC 2012)

Total Mineral Resource Estimate (Blackham tenements only)  

Sediment Hosted Brine – Indicated (94%)

Playa Area

Lakebed Sediment Volume

Brine Concentration

Mineral Tonnage Calculated from Total Porosity

Mineral Tonnage Calculated from Drainable Porosity

K

Mg

SO4

Total Porosity

Brine Volume

SOP Tonnage

Drainable Porosity

Brine Volume

SOP Tonnage

(km2)

(Mm3)

(kg/m3)

(kg/m3)

(Kg/m3)

(Mm3)

(kt)

(Mm3)

(kt)

55.4

290

6.9

7.6

28.3

0.43

125

1,900

0.11

31.9

490

 

Williamson Pit Brine – Measured (6%)

Brine Volume (Mm3)

Potassium Conc.   (kg/m3)

Magnesium Conc.   (kg/m3)

Sulphate Conc.  

(kg/m3)

SOP Tonnage (kt)

1.26

11.4

14.47

48

32

Scoping Study

In July 2018, the Company completed a Scoping Study on development of a 50,000tpa sulphate of potash (SOP) Demonstration Plant at Lake Way that supports a low capex, highly profitable, staged development model.

The Demonstration Plant is supported by the Indicated resource estimate of 1,900,000t SOP calculated from Total Porosity (Stored) and 490,000t calculated from Drainable Porosity, a multiple of the resource required to support a 50,000tpa Demonstration Plant for 2-3 years.

The Demonstration Plant will produce up to 50,000tpa of high quality, standard SOP from hypersaline brine extracted from Lake Way via a system of shallow trenches.

The extracted brine will be transported to a series of solar evaporation ponds built on the Lake where selective evapo-concentration will precipitate potassium double salts in the final evaporation stage. These potassium-rich salts will be mechanically harvested and processed into SOP in a purification and crystallisation plant. The final product will then be transported for sale to domestic and international markets.

The Company has previously tested and verified, at Lake Wells, all the major technical foundations for production of SOP from salt lake brine under actual site conditions and across all seasons. These technical achievements are broadly applicable across all the lakes in the GSLP and form part of the inputs into the Scoping Study.  Subsequent testing of salts generated from Lake Way brine at the Saskatchewan Research Council (“SRC”) (Canada) has confirmed the validity of the GSLP process flowsheet selected for the Lake Way Demonstration Plant.

The Scoping Study established the indicative costs of the Demonstration Plant to +/- 30% accuracy for Operating Costs and -10%/+30% for Capital Expenditure.

Major Study Parameters

Table 2:  Key Assumptions and Inputs 

Maximum Study Accuracy Variation

+/- 30%

Annual Production (steady state)

50,000tpa

Proportion of Production Target – Measured & Indicated

100%

Mineral Resource (Blackham Mining Leases)

SOP Resource (Total Porosity)

2Mt

SOP Resource (Drainable Porosity)

490,000t

Williamson Pit (Measured)

32,000t

Mining Method (Extraction)

Trenches – Average 5m deep

30km

Brine Delivery

595m3/h

Brine Chemistry (SOP Lake Brine only)

15kg/m3

Evaporation Ponds

Area

389ha

Halite Ponds (unlined)

308ha

Harvest Ponds (partially lined)

81ha

Recovery of Potassium from feed brine

63%

Recovery of Sulphate from feed brine

21%

Plant

Operating time (h/a)

7,950

Total Staffing

20

Operating Costs  (±30%)

Minegate

A$251/t

Transport and Handling

A$96/t

Royalties 1

A$40/t

Total Cash Costs (FOB)

A$387/t

Capital Costs (-10%/+30%)

Direct

A$37.3m

Indirect

A$5.2m

Growth Allowance

A$6.3m

Total Capital

A$48.9m

1    Royalties (State Government 2.5% and Other 4.5%)

* Operating costs do not include deprecation or sustaining capital. The Demonstration Plant is intended to operate for 2-3 years to validate the production model, and a successful Demonstration Plant will naturally then be intregrated into a larger production operation.

Capital Expenditure

The initial capital cost to develop the Demonstration Plant has been estimated at A$43 million (before growth allowance). Capital expenditure was estimated at an accuracy of -10% to +30%.

Table 3: Capital Costs

$Am

1.6

7.8

20.3

3.0

0.1

2.6

1.9

37.3

0.4

4.8

5.2

42.5

6.3

48.9

* Errors due to rounding

The benefits of Lake Way’s location are evident in the low Area and Regional Infrastructure capital costs. The availability of a wide flat playa area with amenable in-situ clays offers the opportunity to construct low capex evaporation ponds on the Lake.

Operating Costs

The operating cost estimates are based on an accuracy of ±30%.

Table 4: Operating Costs

Cost per tonne ($A)

Labour

 $    57

Power

 $    24

Maintenance

 $    22

Reagents

 $    14

Consumables

 $    81

Miscellaneous

 $    32

General and Administration

 $    21

Total (Operating Costs per tonne) Mine Gate

 $  251

Transportation

 $    96

Total (Operating Costs per tonne)

 $  347

Royalties (2.5% State Government and 4.5% Others)

$    40

Total Operating Cost per tonne

$  387

* Errors due to rounding

Ongoing Hydrogeological Testwork

Following the completion of the Scoping Study, pumping of four trenches continued (LYTR01, 02, 03 and 04).  Trenches 1 and 2 were pumped for approximately 90 days each and terminated in mid-September in order to observe recovery.  Pumping of trenches 3 and 4 continues, to observe recharge effects during the upcoming wet season.

The extended time of pumping enabled the reconfirmation of the specific yield parameters quoted in the Scoping Study.  The analysis of the final dataset from Trenches 1 and 2 is expected to provide good estimations of aquifer transmissivity and Drainable Porosity that will be key to the further development of the numerical groundwater model.

Throughout the trench testing a brine sample was taken from each trench on a weekly basis with the objective of identifying any variation in brine grade due to the pumping. The results obtained to date show minimal variation in brine grade as the pumping progressed.

Geotechnical Investigations

During the quarter, the Company significantly progressed design of the Williamson Ponds to dewater the Williamson Pit at Lake Way.

A Cone Penetration Test (CPT) rig completed a soil testing programme across the Williamson Pond footprint. Thirty-one CPT’s were undertaken to measure the strength and permeability characteristics of lakebed sediments. The CPT’s provided data to define the geotechnical parameters that are required for final pond analysis and design.

Detailed engineering of the Williamson Ponds commenced, with geotechnical design work completed including CPT data analysis, trafficability assessment, access road analysis, setup of seepage models, borrow pit assessments and development of the Pond construction methodology. Further analysis and design work will produce design drawings for the Ponds.

Civil engineering work also included topographical surveys of the pond and process plant site areas.

Given the unique design and site conditions, the Company is planning an Earthworks Trial as part of the early works construction activities. The trial will finalise earthworks equipment selection and refine the construction methodology for on-lake embankments.

The Company is progressing with the contractor selection process for dewatering of the Williamson Pit.

Mines Department Approval

SLP received environmental approval from the Department of Mines, Industry Regulation and Safety (DMIRS) for the pond system to dewater the Williamson Pit at Lake Way.

DMIRS has given environmental approval to construct ponds totalling up to 133Ha, as well as ancillary infrastructure and a trench to provide conditioning brine to manage the chemistry of the brine extracted from the Williamson Pit.

The Williamson Ponds will be the first operational scale SOP evaporation ponds built on a salt lake in Australia – an important part of the staged de-risking and development at Lake Way and across the Goldfields Salt Lakes Project.

Construction of the Williamson ponds will proceed upon:

·     completion of final engineering designs and contractor engagements;

·     completion of formal documents with Blackham to supersede the MOU (already substantially advanced); and

·     satisfaction of aboriginal heritage requirements. 

Process Testwork

Brine evaporation modelling, conducted by international solar pond experts, Ad Infinitum, indicated the salts produced at Lake Way through the natural evaporation process will be comparable to those produced at Lake Wells and therefore suitable for conversion into SOP. 

The Company executed a range of process development testwork to confirm the Ad Infinitum model and validate inputs to the Lake Way Scoping Study production model. The testwork uses both brines from the lake playa and the super-concentrated brines from the Williamson Pit.

The Lake Way Site Evaporation Trial (SET) continued to process significant volumes of both Lake and Williamson Pit brine. Assay results from samples collected at regular intervals are used to confirm the evaporation pathway aligns closely with predictions from the Company’s evaporation modelling.

Harvest salt from the laboratory evaporation of Lake Way brine was processed at SRC (Canada) to confirm the flowsheet for the Lake Way Demonstration Plant. The Lake Way flowsheet utilises the same unit operations as the previously piloted Lake Wells flowsheet, giving the company confidence that the process is robust and highly transferrable with only minor modifications to crush size.

LAKE WELLS

MOU with Australia Potash

In September 2018, Salt Lake entered into a Memorandum of Understanding and Co-operation Agreement with Australian Potash Limited (ASX: APC) to undertake a joint study of the potential benefits of development cost sharing for each Company’s project developments at Lake Wells.

The Companies’ substantial project holdings at Lake Wells are contiguous with many common infrastructure elements, including access roads, proximity to the Leonora rail terminals, and potential power and fresh water solutions. Both Companies anticipate substantial potential Capex and Opex benefits from some level of infrastructure sharing, with further potential benefits arising from shared or common evaporation and salt processing facilities.

The Companies have agreed to constitute a joint study team to carry out an initial assessment of the merits of infrastructure cooperation. The team will also conduct a high-level review of potential benefits of upstream operational synergies. A substantial part of the Study work will be outsourced to independent engineers and both Companies intend to continue with their independent project developments in parallel with the Study.

Mining Lease

The Company’s first Mining Lease at Lake Wells was granted in September 2018, a significant milestone in the Projects development pathway.

ML 38/1278 covers 87.4km2 in the south east corner of the Lake Wells project. The Mining Lease has an initial 21 year term.

LAKE BALLARD

Geological Interpretation

Lake Ballard project is located about 15 km north of Menzies. The playa is a significant regional landform with a surface area of over 626km2. The geology of Lake Ballard is similar to that encountered at other lakes in the Company’s GSLP.   

The Lake Ballard drainage is incised into the granite-greenstone basement and now in filled with a mixed sedimentary sequence. The lake bed sediments are underlain by a deeper paleochannel characterised by a sandy layer at its base.

The lake bed sediments comprise a mixed sequence of sands, clays and silts reflecting the climatic and depositional environment that created firstly the paleochannel and subsequently the lake.

At Lake Ballard the surficial deposits also include a highly consolidated sand layer between 1.5 and 3m depth.  This layer is non continuous across the lake and acts as a local aquiclude that results in a release of hydrostatic pressure and localised high flows when broken through.

Surface Aquifer Exploration Programme

The Company mobilised an amphibious excavator on Lake Ballard in July 2018 to complete a surface aquifer exploration programme.

The objective of the programme was to gather geological and hydrological data about the shallow brine aquifer hosted by the Quaternary alluvium stratigraphic sequence in the upper levels of the Lake. The programme is to evaluate the geology of the shallow lakebed sediments, and to undertake pumping trials to provide estimates of the potential brine yield from trenches in the shallow sediment and ultimately enable estimation of an indicated resource calculated from Total Porosity and Drainable Porosity. The excavator programme provides important geological and geotechnical information for potential construction of trenches and on-lake brine evaporation ponds.

Previous work in 2017 included the excavation of 163 test pits and 8 trenches and brine sampling. Work during the quarter included re-evaluation of gravity data to locate the deepest part of the paleochannel (the Thalweg), resampling and hydraulic testing of 38 test pits across the lake comprising 17 of the 2017 test pits at the eastern end of the lake and 21 new test pits located across the lake.  The new pits were logged geologically and all pits were sampled for brine chemistry and hydraulic testing.  In addition, 170 test pits from the 2017 and 2018 programmes were rehabilitated and one of the 2017 trenches extended to a total length of 180m.

The programme is ongoing and involves an auger drilling programme and trench testing.

Gravity Re-evaluation

The gravity data initially collected in 2017 was re-evaluated to identify the location of the Thalweg. Of particular interest was the eastern end where the channel crosses from Lake Ballard to the adjacent Lake Marmion. This assessment will facilitate the location of targets for future drilling.

Test Pits

38 test pits were assessed in 2018 to develop a greater understanding of the geology and brine chemistry across the lake. The pits were dug to 5m. In-situ samples were taken using Shelby tubes for 5 pits to assess total and drainable porosity of the sediment. Preliminary results of the data available are summarised in Table 5.

Table 5: Shelby Tube Porosity and Effective Porosity Results

Sample Id

Sample Depth (m)

Total Porosity (%)

Drainable Porosity (%)

LBTT 121

1

52.5

12.5

LBTT 121

2

60.1

14.7

LBTT 121

3

35.2

6.5

LBTT 121

4

43.1

11.9

LBTT 144

0.75

55.8

12.4

LBTT 144

1.75

58.2

12.5

LBTT 144

2.75

45.4

5.4

LBTT 155

0.75

59.9

10.6

LBTT 155

1.75

38.5

4.2

LBTT 155

2.75

26.7

5.7

Brine Chemistry

Over 140 brine samples have been analysed for Lake Ballard. Brine chemistry is reasonably uniform across the lake. 

All brine samples are considered to be composite samples representing the whole excavated or drilled depth at each location. Given the proposed abstraction techniques will involve trenches excavated to at least 4m across a large portion of the playa, the use of composite samples is representative of the brine that will be extracted.

Between 2017 and 2018, 142 brine samples were analysed from the test pits and trenches. The full suite of brine samples including their location is attached in Appendix 2. 

The spatial distribution of potassium concentration across the samples is reasonably consistent ranging from 1,040 to 2,460 mg/L. There are several low measurements of potassium, all of which relate to samples taken from test pits very close to the lake shore. At the lake shore there is the potential for local dilution following freshwater runoff onto the lake that may result in a localised area of lower brine concentration.

Auger Drilling

The Company commenced an auger drilling programme at Lake Ballard in September to obtain insitu samples for geological logging, porosity measurement, specific yield testing and brine sampling. The holes were drilled using a track mounted auger rig, capable of drilling to between 15 – 20m depth depending on ground conditions.

The programme consisted of a total of 15 holes at 11 locations. Location and total depth is outlined in Table 6. A brine sample was also recovered at each location. 

The core sample was collected using hollow stem augers within which a 1m plastic tube was inserted.  The plastic tubes were sealed immediately upon retrieval to prevent drying and loss of entrained brine.

The programme was successful with over 130m of core collected, from which 45 samples were selected for laboratory analysis of total and drainable porosity.  The core samples chosen for analysis were representative of the programme in terms of both location and depth interval from surface to total depth.

All core was delivered to Core Laboratories and the analysis will be completed and reported in the next quarter.

Table 6: Hole Locations and Depths

Hole ID

Easting

Northing

Depth (m)

Cased

Brine Sample

LBPAG01

319177

6731097

12.7

LBPAG02

318517

6731243

10.8

Yes

LBPAG03

315539

6733652

13

Yes

B800061,62

LBPAG04

311947

6733975

13.5

B800063,64

LBPAG05

307467

6735256

14.5

B800065,66

LBPAG06(a)

303547

6733253

5

LBPAG06(b)

304066

6733890

9

LBPAG07(a)

301092

6737570

4.5

B800067,68

LBPAG07(b)

300749

6937786

4

LBPAG07(c)

300443

6737940

3

LBPAG08

303139

6739647

10

Yes

B800069,70

LBPAG09(a)

299465

6741072

4

LBPAG09(b)

299174

6741053

4.5

LBPAG10

294859

6741331

11

Yes

B800071,72

LBPAG11

290355

6741953

15

Yes

B800073,74

 

Further Planned Work

The Company intends to undertake further work at Lake Ballard, including pumping of 2 test trenches to determine aquifer properties including hydraulic conductivity and Drainable Porosity.

EVAPORATION MODELLING

The Company continued to develop in-house capability to model evaporation pathways for lake brines under differing conditions to inform evaporation pond design and model salt production. An in-house modelling tool has been developed using a combination of standard engineering expressions and a well established and proven chemical-thermodynamic database.

SOP SAMPLE PRODUCTION

Perth Laboratory

The Company began the process of converting 10 tonnes of harvest salts collected from the Lake Wells SET into SOP samples at the Company’s in-house laboratory in Perth at the end of the quarter.  The process being used is based upon the flowsheet previously tested by SRC.

An initial 2 tonnes of salt were selected to represent a range of seasonal outputs from the SET. The process will initially be simulated through a series of batch operations to investigate the effects of seasonality on process performance.

The ultimate aim of the in-house work is to generate several hundred kilograms of lake-derived SOP product for assessment of quality and for marketing purposes. The operation also provides the Company’s process team valuable hands-on experience in the operation of a salt-brine process.    

Product Preparation

The Company is considering a range of product preparations for commercial scale production of SOP including standard (powder), compacted, spherical (granular) and soluble products.

During the quarter the Company engaged FEECO, USA to conduct granulation testwork using growth agglomeration techniques to generate a spherical fertilizer granule from Lake Wells produced SOP. The tests found that an attractive, 2mm to 4mm spherical SOP granule can be readily produced with the desired strength and physical properties. 

For further information please visit www.saltlakepotash.com.au or contact:

Matt Syme/Clint McGhie

Salt Lake Potash Limited

Tel: +61 8 9322 6322

Jo Battershill

Salt Lake Potash Limited

Tel: +44 (0) 20 7478 3900

Colin Aaronson/Richard Tonthat/
Ben Roberts

Grant Thornton UK LLP (Nominated Adviser)

Tel: +44 (0) 20 7383 5100

Derrick Lee/Beth McKiernan

Cenkos Securities plc (Joint Broker)

Tel: +44 (0) 131 220 6939

Jerry Keen/Toby Gibbs

 

Shore Capital (Joint broker)

Tel: +44 (0) 20 7468 7967

 

 

Competent Persons Statement

The information in this announcement that relates to Exploration Results for Lake Ballard is based on information compiled by Mr Ben Jeuken, who is a member Australian Institute of Mining and Metallurgy and a member of the International Association of Hydrogeologists. Mr Jeuken is employed by Groundwater Science Pty Ltd, an independent consulting company. Mr Jeuken has sufficient experience, which is relevant to the style of mineralisation and type of deposit under consideration and to the activity, which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the ‘Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves’. Mr Jeuken consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

The information in this announcement that relates to Process Testwork Results is extracted from the report entitled ‘June 2018 Quarterly Report’ dated 30 July 2018. This announcement is available to view on www.saltlakepotash.com.au. The information in the original ASX Announcement that related to Process Testwork Results was based on, and fairly represents, information compiled by Mr Bryn Jones, BAppSc (Chem), MEng (Mining) who is a Fellow of the AusIMM, a ‘Recognised Professional Organisation’ (RPO) included in a list promulgated by the ASX from time to time. Mr Jones is a Director of Salt Lake Potash Limited. Mr Jones has sufficient experience, which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking, to qualify as a Competent Person as defined in the 2012 Edition of the ‘Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves’. Salt Lake Potash Limited confirms that it is not aware of any new information or data that materially affects the information included in the original market announcement. Salt Lake Potash Limited confirms that the form and context in which the Competent Person’s findings are presented have not been materially modified from the original market announcement.

The information in this announcement that relates to the Lake Way Mineral Resource is extracted from the report entitled ‘Scoping Study for Low Capex, High Margin Demonstration Plant at Lake Way’ dated 31 July 2018. This announcement is available to view on www.saltlakepotash.com.au. The information in the original ASX Announcement that related to Mineral Resources was based on, and fairly represents, information compiled by Mr Ben Jeuken, who is a member Australian Institute of Mining and Metallurgy and a member of the International Association of Hydrogeologists. Mr Jeuken is employed by Groundwater Science Pty Ltd, an independent consulting company. Mr Jeuken has sufficient experience, which is relevant to the style of mineralisation and type of deposit under consideration and to the activity, which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the ‘Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves’. Salt Lake Potash Limited confirms that it is not aware of any new information or data that materially affects the information included in the original market announcement and, in the case of estimates of Mineral Resources, that all material assumptions and technical parameters underpinning the estimates in the relevant market announcement continue to apply and have not materially changed. Salt Lake Potash Limited confirms that the form and context in which the Competent Person’s findings are presented have not been materially modified from the original market announcement. 

Production Target

The Lake Way Demonstration Plant Production Target stated in this report is based on the Company’s Scoping Study as released to the ASX on 31 July 2018. The information in relation to the Production Target that the Company is required to include in a public report in accordance with ASX Listing Rule 5.16 and 5.17 was included in the Company’s ASX Announcement released on 31 July 2018. The Company confirms that the material assumptions underpinning the Production Target referenced in the 31 July 2018 release continue to apply and have not materially changed.

 

Appendix 1 – Summary of Exploration and Mining Tenements

As at 30 September 2018, the Company holds interests in the following tenements:

 

Project

Status

Type of Change

License Number

Interest (%)
1-Jul-18

Interest (%)

30-Sep-18

Western Australia

Lake Wells

Central

Granted

E38/2710

100%

100%

South

Granted

E38/2821

100%

100%

North

Granted

E38/2824

100%

100%

Outer East

Granted

E38/3055

100%

100%

Single Block

Granted

E38/3056

100%

100%

Outer West

Granted

E38/3057

100%

100%

North West

Granted

E38/3124

100%

100%

West

Granted

L38/262

100%

100%

East

Granted

L38/263

100%

100%

South West

Granted

L38/264

100%

100%

South

Granted

L38/287

100%

100%

South Western

Granted

E38/3247

100%

100%

South

Granted

Granted

M38/1278

100%

100%

Lake Ballard

West

Granted

E29/912

100%

100%

East

Granted

E29/913

100%

100%

North

Granted

E29/948

100%

100%

South

Granted

E29/958

100%

100%

South East

Granted

E29/1011

100%

100%

South East

Granted

E29/1020

100%

100%

South East

Granted

E29/1021

100%

100%

South East

Granted

E29/1022

100%

100%

Lake Irwin

West

Granted

E37/1233

100%

100%

Central

Granted

E39/1892

100%

100%

East

Granted

E38/3087

100%

100%

North

Granted

E37/1261

100%

100%

Central East

Granted

E38/3113

100%

100%

South

Granted

E39/1955

100%

100%

North West

Granted

E37/1260

100%

100%

South West

Granted

E39/1956

100%

100%

Lake Minigwal

West

Granted

E39/1893

100%

100%

East

Granted

E39/1894

100%

100%

Central

Granted

E39/1962

100%

100%

Central East

Granted

E39/1963

100%

100%

South

Granted

E39/1964

100%

100%

South West

Granted

E39/1965

100%

100%

Lake Way

Central

Granted

E53/1878

100%

100%

South

Application

E53/1897

100%

100%

Lake Marmion

North

Granted

E29/1000

100%

100%

Central

Granted

E29/1001

100%

100%

South

Granted

E29/1002

100%

100%

West

Granted

E29/1005

100%

100%

Lake Noondie

North

Granted

Granted

E57/1062

100%

100%

Central

Granted

Granted

E57/1063

100%

100%

South

Granted

Granted

E57/1064

100%

100%

West

Granted

Granted

E57/1065

100%

100%

East

Granted

Granted

E36/932

100%

100%

Lake Barlee

North

Granted

Granted

E30/495

100%

100%

Central

Granted

E30/496

100%

100%

South

Granted

E77/2441

100%

100%

Lake Raeside

North

Granted

Granted

E37/1305

100%

100%

Lake Austin

North

Application

E21/205

100%

100%

West

Application

E21/206

100%

100%

East

Application

E58/529

100%

100%

South

Application

E58/530

100%

100%

South West

Application

E58/531

100%

100%

Northern Territory

Lake Lewis

South

Granted

EL 29787

100%

100%

North

Granted

EL 29903

100%

100%

 

Appendix 2 – Lake Ballard Brine Sample Analysis

HOLE ID

Easting

Northing

TDS
(by calc)

Na

Ca

Mg

K

SO4

Cl

Solution
SG
(g/cm3)

Solution
pH

Sample Depth

LBPT002

325658

6731602

62100

1540

4550

1430

7110

112550

1.1082

Composite Sample

LBPT003

308700

6730471

55100

1660

4160

1360

6600

93200

1.1017

Composite Sample

LBPT004

302738

6744250

87900

834

8230

2050

9600

157950

1.1536

Composite Sample

LBPT005

302212

6743736

89900

1060

6550

2010

8130

154900

1.16776

Composite Sample

LBPT006

302212

6743736

89900

1080

6630

2020

8010

154550

1.17008

Composite Sample

LBPT007

302212

6743736

94900

974

7520

2170

8790

160850

1.176

Composite Sample

LBPT008

302212

6743736

92900

983

7460

2080

8820

159250

1.17392

Composite Sample

LBPT009

325586

6731856

271950

85500

883

9590

1780

8460

161400

1.18316

7.12

Composite Sample

LBPT010

325447

6732100

275850

86100

999

8080

2020

8250

160500

1.17792

6.95

Composite Sample

LBPT012

326492

6732881

278500

87000

864

9680

2100

8790

162100

1.18092

6.82

Composite Sample

LBPT013

319001

6727398

192550

63700

1070

4800

1450

5250

112050

1.12904

7.01

Composite Sample

LBPT014

277821

6735449

233450

76300

1120

5350

1840

6900

134450

1.14844

6.86

Composite Sample

LBPT015

278070

6735444

230400

74600

1160

4980

1750

6300

133900

1.15236

6.87

Composite Sample

LBPT016

319201

6727398

260500

83100

1140

7000

1850

7680

153500

1.17264

6.71

Composite Sample

LBPT017

308680

6730653

189500

62700

1060

4730

1440

5160

110800

1.12984

6.95

Composite Sample

LBPT018

308660

6730898

260150

83800

1140

7050

1860

7620

153500

1.17496

6.68

Composite Sample

LBPT019

301117

6725240

193450

61900

858

5960

1170

8310

113250

1.13496

6.81

Composite Sample

LBPT020

301140

6725500

199850

65900

1190

5730

1160

8940

115550

1.1362

6.99

Composite Sample

LBPT021

302640

6727058

255200

83700

1010

6790

1600

9030

149650

1.17316

6.47

Composite Sample

LBPT022

302354

6727064

257600

83600

999

6910

1700

9000

150700

1.17012

6.55

Composite Sample

LBPT023

304245

6745381

219950

74400

1280

5470

1730

6690

129700

1.1418

6.85

Composite Sample

LBPT024

304000

6745229

218700

74100

1190

5300

1770

6240

128850

1.13956

7

Composite Sample

LBPT025

302690

6744000

240100

78600

1050

6410

1850

7710

141100

1.15652

6.92

Composite Sample

LBPT026

302763

6743750

266400

85400

950

7420

1840

8880

155950

1.16004

6.78

Composite Sample

LBPT027

304000

6745229

189300

63000

1440

1400

7200

107000

1.1224

Composite Sample

LBTT011

324848

6734075

263350

86300

938

8380

2130

7350

159000

1.17812

6.67

Composite Sample

LBTT014

324869

6734673

208200

69500

892

5700

1770

5220

123250

1.1396

7.04

Composite Sample

LBTT015

324875

6734875

118100

40300

735

3210

1040

3510

70750

1.08432

7.01

Composite Sample

LBTT015

324875

6734875

170000

55400

800

4570

1360

4680

96200

1.107544

6.83

Composite Sample

LBTT015

324875

6734875

246073

98788

473

6035.2

3030

22417

155972

1.191

6.3

Composite Sample

LBTT016

324648

6734154

207650

70500

1050

5820

1770

5490

126600

1.14124

6.9

Composite Sample

LBTT017

324447

6734155

233400

81500

1050

7100

2040

6210

145850

1.16256

6.89

Composite Sample

LBTT018

324250

6734155

230650

82300

1070

6980

2060

6150

142200

1.13408

6.8

Composite Sample

LBTT019

324047

6734155

246850

86200

1040

7840

2140

7110

154250

1.17032

6.76

Composite Sample

LBTT019

324047

6734155

275500

89500

1100

8200

2130

7245

156150

1.171568

6.67

Composite Sample

LBTT020

323847

6734155

240150

80500

1080

7300

2050

6450

147250

1.15928

6.7

Composite Sample

LBTT021

323650

6734155

213000

73600

1140

6200

1870

5910

131150

1.17644

6.73

Composite Sample

LBTT022

323447

6734155

195000

66700

1080

5540

1760

5400

119600

1.1366

6.89

Composite Sample

LBTT023

323249

6734154

200650

66400

1070

5570

1730

5310

120300

1.13696

6.92

Composite Sample

LBTT024

323047

6734155

202400

66600

1050

5570

1740

5310

122200

1.13928

6.9

Composite Sample

LBTT024

323047

6734155

211000

67800

1060

5660

1670

5490

119200

1.131568

6.76

Composite Sample

LBTT025

323838

6734261

247650

87900

1120

7470

2200

7260

151100

1.164628

Composite Sample

LBTT026

323839

6734212

232200

82200

1160

6750

2140

6510

144150

1.17144

Composite Sample

LBTT027

323845

6734107

241750

83200

1090

7030

2110

6720

145000

1.172956

Composite Sample

LBTT028

323847

6734054

240600

81100

1170

6880

2110

6450

145000

1.141296

Composite Sample

LBTT030

322735

6730202

261050

90400

1200

7900

2350

7620

159150

1.183848

Composite Sample

LBTT031

322531

6730201

266250

89600

1180

7830

2160

7470

160050

1.093476

Composite Sample

LBTT031

322531

6730201

286000

88800

925

8940

1910

9180

161900

1.179036

6.68

Composite Sample

LBTT038

321137

6730178

282000

88650

958.5

8675

1810

9120

156925

1.175404

6.8

Composite Sample

LBTT043

320136

6730166

262350

88300

1050

8040

2040

8580

155650

1.110616

Composite Sample

LBTT046

320132

6730100

185600

63400

1570

5380

1490

7650

109450

1.13928

Composite Sample

LBTT047

320136

6730206

223850

74500

1310

6440

1720

8250

129300

1.175924

Composite Sample

LBTT050

318601

6728705

162200

60100

1440

3940

1390

5820

96900

1.186168

Composite Sample

LBTT053

319201

6728663

261900

91900

1120

7830

2040

9030

154200

1.1396

Composite Sample

LBTT054

319406

6728628

260600

88700

1100

7590

1980

8550

154400

1.08432

Composite Sample

LBTT055

319603

6728608

261800

90600

1210

7230

2080

7860

153850

1.17812

Composite Sample

LBTT055

319603

6728608

270000

85900

1070

8000

1880

8790

153150

1.169972

6.74

Composite Sample

LBTT056

319804

6728588

259750

90700

1010

7990

1900

9360

152600

1.14124

Composite Sample

LBTT057

320003

6728568

271000

94200

1130

7670

2180

8250

159350

1.16256

Composite Sample

LBTT058

320209

6728546

260050

90000

1310

6450

2170

6480

153500

1.13408

Composite Sample

LBTT059

320404

6728525

251900

93600

1070

7800

2000

9000

157550

1.17032

Composite Sample

LBTT060

320604

6728506

246250

88700

1110

7770

1940

8640

153500

1.15928

Composite Sample

LBTT061

320800

6728486

241550

86400

1060

7830

1960

8790

152800

1.17644

Composite Sample

LBTT061

320800

6728486

270000

89200

1190

7270

1970

7560

151600

1.171012

6.72

Composite Sample

LBTT063

321301

6728433

247000

89800

1090

7860

2110

8370

156700

1.1366

Composite Sample

LBTT064

321502

6728412

247650

89600

1150

7390

2080

8130

157050

1.13696

Composite Sample

LBTT065

321703

6728389

238450

88600

1280

6860

2070

7560

150150

1.170068

Composite Sample

LBTT068

319222

6730192

276000

88300

1000

8320

1930

8730

155450

1.17294

6.69

Composite Sample

LBTT068

319222

6730192

244564

96474

446

6273

3038

26015

152114

1.19

6.3

Composite Sample

LBTT071

318604

6730200

255650

93500

1030

7970

2170

8910

159700

1.179528

Composite Sample

LBTT072

318364

6731106

264350

94500

1070

7650

2100

9090

160400

1.1766

Composite Sample

LBTT073

318513

6731235

252350

92100

1060

7280

2020

8580

155800

1.093348

Composite Sample

LBTT073

318513

6731235

323000

92600

638

14400

3290

12800

174600

1.198072

6.55

Composite Sample

LBTT074

318664

6731366

259700

88900

1170

7020

1940

8400

153700

1.1235

Composite Sample

LBTT075

318810

6731492

266500

94200

1130

7280

2050

8400

158450

1.1642

Composite Sample

LBTT076

318936

6731596

249350

90400

1260

6610

2010

7800

151400

1.096176

Composite Sample

LBTT076

318936

6731596

241450

86600

1230

6570

1970

7650

150300

1.09778

Composite Sample

LBTT077

319077

6731719

251450

93400

1060

7440

2000

8640

156350

1.195852

Composite Sample

LBTT078

319224

6731844

247050

90000

1090

7360

1900

8430

155100

1.1211

Composite Sample

LBTT079

319344

6731947

255450

90100

1020

7540

1930

8580

158800

1.1566

Composite Sample

LBTT080

319491

6732075

252550

88800

1020

7880

1920

9270

155250

1.1841

Composite Sample

LBTT081

319626

6732190

247750

87100

1100

7830

1870

9600

151200

1.1644

Composite Sample

LBTT082

319787

6732309

248350

87300

1020

8170

1900

10000

150700

1.183732

Composite Sample

LBTT082

319787

6732309

247200

88300

1020

8230

1890

9600

151050

1.147

Composite Sample

LBTT083

319908

6732429

263600

91700

935

8690

1940

10200

157950

1.131

Composite Sample

LBTT084

320056

6732555

268350

91000

892

9080

1960

10700

158300

1.1101

Composite Sample

LBTT087

320625

6733158

276000

85700

988

8680

2010

9000

152650

1.177

6.87

Composite Sample

LBTT087

316105

6731412

244534

98413

458

5802.1

3357

22360

156523

1.193

6.2

Composite Sample

LBTT099

316105

6731412

268000

95200

978

7950

1980

8340

162250

1.1844

7.37

Composite Sample

LBTT099

316051

6731653

270000

85000

988

7500

1900

8280

149550

1.179

6.62

Composite Sample

LBTT099

316051

6731653

239387

90960

981

7834.6

2012

8917

157625

1.178

6.5

Composite Sample

LBTT100

315997

6731866

266000

90700

996

7950

2040

8100

160300

1.1776

6.99

Composite Sample

LBTT100

315997

6731866

266000

90700

996

7950

2040

8100

160300

1.1776

6.99

Composite Sample

LBTT101

315815

6732626

263000

88200

1020

7950

2040

8100

158200

1.1804

6.78

Composite Sample

LBTT103

315764

6732827

269000

93600

987

8340

2050

8970

162100

1.1808

6.79

Composite Sample

LBTT105

315704

6733021

280000

98700

862

8850

2070

9390

168200

1.1856

6.74

Composite Sample

LBTT106

315603

6733390

263000

94000

1060

7890

2030

8820

158050

1.1768

6.85

Composite Sample

LBTT107

315538

6733588

273000

95000

918

8550

2050

9360

164900

1.1868

6.81

Composite Sample

LBTT109

315395

6733959

272000

96800

935

8230

2030

9060

163150

1.184

6.73

Composite Sample

LBTT110

315395

6733959

259000

91700

1070

7490

2010

7890

155400

1.1756

6.69

Composite Sample

LBTT112

315314

6734154

269000

92700

959

8200

2080

8580

161550

1.1816

6.64

Composite Sample

LBTT112

315314

6734154

288000

89900

968

8240

2100

8220

158100

1.1846

6.81

Composite Sample

LBTT113

315240

6734314

278000

96500

909

8790

2160

8880

166300

1.1888

6.72

Composite Sample

LBTT114

316375

6734039

276000

96500

949

8500

2160

8970

165250

1.1872

6.79

Composite Sample

LBTT115

316375

6734039

265000

91100

1020

8080

2190

8190

158900

1.1772

6.8

Composite Sample

LBTT115

316521

6734168

279000

90000

1040

8050

2130

8430

149400

1.1825

6.72

Composite Sample

LBTT116

316962

6734577

261000

91100

1030

7550

2130

7680

156300

1.1688

6.67

Composite Sample

LBTT119

317399

6734975

273000

95600

1140

8120

2230

8220

163850

1.1728

6.6

Composite Sample

LBTT123

317694

6732520

258000

92800

1050

7450

2070

8190

154700

1.1552

6.59

Composite Sample

LBTT124

317839

6735385

279000

84500

988

7570

1940

8040

158950

1.1819

6.82

Composite Sample

LBTT125

317986

6735519

251000

85100

1070

7390

2030

7920

150150

1.1488

6.61

Composite Sample

LBTT126

318137

6735660

243000

85600

1330

6520

1960

6900

144900

1.1464

6.66

Composite Sample

LBTT127

318282

6735794

246000

87100

1290

6830

2050

7080

146650

1.1408

6.73

Composite Sample

LBTT128

318428

6735928

243000

87100

1300

6710

2040

7140

145450

1.1532

6.77

Composite Sample

LBTT129

318428

6735928

256000

88000

1180

7110

2080

7410

151900

1.1524

6.68

Composite Sample

LBTT129

318428

6735928

271000

87400

1120

7450

1990

7770

154200

1.169028

6.75

Composite Sample

LBTT131

313153

6737408

163000

58000

996

4420

1310

5250

96700

1.0964

6.98

Composite Sample

LBTT132

313132

6737224

258000

91800

1170

6850

2060

7110

153150

1.154

6.65

Composite Sample

LBTT133

313105

6737027

269000

94600

1020

7470

2060

8400

158750

1.1632

6.64

Composite Sample

LBTT133

313105

6737027

287000

90400

950

7920

1990

8550

157750

1.1838

6.68

Composite Sample

LBTT134

313082

6736829

271000

94300

1030

7490

2100

7740

161050

1.1616

6.63

Composite Sample

LBTT135

313051

6736634

270000

93400

1020

7390

2110

8160

159800

1.1684

6.68

Composite Sample

LBTT136

313029

6736432

263000

91400

1020

7460

2040

8040

156450

1.1652

6.63

Composite Sample

LBTT137

313004

6736240

312000

96500

853

9450

2460

8940

170850

1.1934

6.72

Composite Sample

LBTT142

312874

6735244

257000

89700

959

7650

1970

8340

152600

1.156

6.65

Composite Sample

LBTT142

312874

6735244

287000

92600

963.5

8140

2020

8880

159275

1.1761

6.73

Composite Sample

LBTT143

312850

6735049

261000

91600

968

7570

1950

8910

154900

1.1588

6.61

Composite Sample

LBTT144

312822

6734850

272000

85000

1080

7260

1890

8580

148400

1.1759

6.82

Composite Sample

LBTT145

312797

6734660

238000

86100

1090

6030

1780

7080

140700

1.1436

6.67

Composite Sample

LBTT149

313340

6733847

253000

84700

993

6650

1720

7710

147700

1.164

7.02

Composite Sample

LBTT150

313323

6733652

257000

86700

1060

6950

1750

8520

148400

1.166

6.78

Composite Sample

LBTT156

313143

6732468

270000

89800

939

7900

1860

9060

156650

1.1764

6.62

Composite Sample

LBTT165

308329

6738318

290000

91300

968

7780

2010

8310

157050

1.1789

6.59

Composite Sample

LBTT166

307463

6735246

278000

90200

1030

7450

1910

8880

152450

1.1722

6.7

Composite Sample

LBTT166

307463

6735246

238197

90335

986

7403.7

1911

9177

157074

1.177

6.6

Composite Sample

LBTT169

307397

6731029

279000

88000

1010

7510

1850

8670

151100

1.1764

6.66

Composite Sample

LBTT169

307397

6731029

238546

91021

973

7519.6

1853

9493

157074

1.177

6.5

Composite Sample

LBTT170

304632

6730314

261000

84100

1190

6600

1750

7920

146150

1.1633

6.75

Composite Sample

LBTT171

300652

6730490

276000

88100

1200

6720

1900

7380

151250

1.1811

6.75

Composite Sample

LBTT172

303546

6733252

286000

91600

1000

7320

2010

8040

158950

1.1836

6.53

Composite Sample

LBTT176

300602

6734536

275000

88800

959

7310

1750

9420

150950

1.1739

6.59

Composite Sample

LBTT181

298362

6736492

278000

90200

933

7240

1730

9150

155200

1.2208

6.64

Composite Sample

Note: Results indicated in italix are duplicate samples

APPENDIX 3 – JORC TABLE ONE

Section 1: Sampling Techniques and Data

CriteriaCriteria

JORC Code explanationJORC Code explanation

CommentaryCommentary

Sampling techniques

Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.

Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.

Aspects of the determination of mineralisation that are Material to the Public Report.

In cases where ‘industry standard’ work has been done this would be relatively simple (eg ‘reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay’). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.

Sampling involved the excavation of 38 test pits over the tenement area to a depth of 4mbgl or weathered basement whichever was encountered first. 

A brine sample and duplicate were taken from each test pit and trench for analysis.

Samples were taken manually by initially rinsing out the bottle with brine from the pit or trench and then placing the bottle in the test pit or trench and allowing it to fill.

Samples were analysed for K, Mg, Ca, Na, Cl, SO4, HCO3, NO3, pH, TDS and specific gravity.

Each test pit was geologically logged and a sample taken each 1m depth.

Drilling techniques

Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).

No drilling results are reported.  Test pits were dug with an excavator approximately 2m long x 1m wide x 4m deep.

 

Drill sample recovery

Method of recording and assessing core and chip sample recoveries and results assessed.

Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.

Samples from the test pits were logged each bucket and a representative sample bagged.

100% of excavated sample was available for sampling.  The ability to see the bulk sample facilitated the selection of a representative sample.

There is no relationship between sample recovery and grade and no loss of material as a result of excavation.

Logging

Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.

Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.

The total length and percentage of the relevant intersections logged.

The geological logging is sufficient for the purposes of identifying variations in sand/ clay and silt fraction within the top 4m.  For a brine abstraction project, the key parameters are the hydraulic conductivity and storativity of the host rock, which will be determined during test pumping of trenches.

The logging is qualitative.

The entire pit depth was logged in every case.

Sub-sampling techniques and sample preparation

If core, whether cut or sawn and whether quarter, half or all core taken.

If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.

For all sample types, the nature, quality and appropriateness of the sample preparation technique.

Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.

Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.

Whether sample sizes are appropriate to the grain size of the material being sampled.

No drilling results are reported.

At all test pits brine samples were taken from the pit after 24hours or once the pit had filled with brine.  The brine samples taken from the pits are bulk samples which is an appropriate approach given the long-term abstraction technique of using many kilometres of trenches to abstract brine from the upper 4m.

All the samples taken were incorporated into a rigorous QA / QC programme in which Standards and Duplicates were taken. The samples were taken in sterile plastic bottles of 250ml capacity.

Excavated lake bed samples were sealed in plastic bags.  For all brine samples (original or check samples) the samples were labelled with the alphanumeric code Y8001, Y80002.

Lake bed samples were labelled with the test pit locator LYTT01, LYTT02 etc. and the depth from which they were taken.

Quality of assay data and laboratory tests

The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.

For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.

Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.

The brine samples were sent to Bureau Veritas Laboratories in Perth, WA with the duplicates being held by SLP.  Every 10th duplicate was sent to Intertek, an alternate laboratory for comparison purposes.

No laboratory analysis was undertaken with geophysical tools.

Soil samples and laboratory derived hydraulic conductivity, total porosity and drainable porosity samples were analysed by Core Laboratories in Perth WA.  All laboratories used are NATA certified.

Verification of sampling and assaying

The verification of significant intersections by either independent or alternative company personnel.

The use of twinned holes.

Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.

Discuss any adjustment to assay data.

No drilling results reported.

All sampling and assaying is well documented and contained on SLP’s internal database.

No adjustments have been made to assay data

Location of data points

Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.

Specification of the grid system used.

Quality and adequacy of topographic control.

All coordinates were collected by handheld GPS.

The grid system is the Australian National Grid Zone MGA 51 (GDA 94).

The is no specific topographic control as the lake surface can essentially be considered flat.

Data spacing and distribution

Data spacing for reporting of Exploration Results.

Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.

Whether sample compositing has been applied.

The Lake Ballard area was calculated by digitising the lake surface and removing the area covered by the islands the approximate area is 626km2.  38 test pits were excavated over the lake surface resulting in 1 excavation per 16.47Km2. Which whilst it is a low density of investigation for a salt-lake it is sufficient to establish variations in brine content.

Sample compositing has not been applied.

Orientation of data in relation to geological structure

Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.

If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.

There are no structural or geological controls with respect to sampling the lake bed sediments. 

Geological influence on the brine is limited to the aquifer parameters of the host rock, namely the hydraulic conductivity, drainable porosity and storativity.

Sample security

The measures taken to ensure sample security.

SLP field geologists were responsible for collecting, sealing and labelling brine and Shelby tube samples prior to shipping to the Perth labs and the SLP offices.  The security measures for the material and type of sampling at hand was appropriate.

Audits or reviews

The results of any audits or reviews of sampling techniques and data.

No audits or review of sampling techniques have been undertaken.  The brine chemistry data has been reviewed for charge balance.

 

Section 2: Reporting of Exploration Results

CriteriaCriteria

JORC Code explanationJORC Code explanation

Commentary

Mineral tenement and land tenure status

Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.

The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.

The Lake Ballard project area is covered by Exploration licences E29/0912, E29/1011, E29/1022, E29/0958, E29/1021, E29/0948, E29/1020 and E29/0913.

All tenements are held by Piper Preston Pty Ltd, a wholly owned subsidiary of Salt Lake Potash Limited.

Exploration done by other parties

Acknowledgment and appraisal of exploration by other parties.

No previous work has been carried out on Lake Ballard for potash exploration.

Geology

Deposit type, geological setting and style of mineralisation.

The deposit is a salt-lake brine deposit.

The lake setting is typical of a Western Australian palaeovalley environment. Ancient hydrological systems have incised palaeovalleys into Archaean basement rocks, which were then infilled by Tertiary-aged sediments typically comprising a coarse-grained fluvial basal sand overlaid by palaeovalley clay with some coarser grained interbeds. The clay is overlaid by recent Cainozoic material including lacustrine sediment, calcrete, evaporite and aeolian deposits. 

Drill hole Information

A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:

o   easting and northing of the drill hole collar

o   elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar

o   dip and azimuth of the hole

o   down hole length and interception depth

o   hole length.

If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.

No drill results are reported. 

38 test pits and 8 trenches were excavated on the lake surface.

All test pit locations are presented in the report.

Data aggregation methods

In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.

Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.

The assumptions used for any reporting of metal equivalent values should be clearly stated.

Within the salt-lake extent no low-grade cut-off or high-grade capping has been implemented due to the consistent nature of the brine assay data.

Relationship between mineralisation widths and intercept lengths

These relationships are particularly important in the reporting of Exploration Results.

If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.

If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg ‘down hole length, true width not known’).

The chemical analysis from each of the test pits has shown the that the brine resource is consistent and continuous through the full thickness of the Lake Playa sediments unit. The unit is flat lying all test pits were excavated into the lake sediments to a depth of 4m or basement, the intersected depth is equivalent to the vertical depth and the thickness of mineralisation.

 

Diagrams

Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.

All location maps and sections are contained within the body of the report.

Balanced reporting

Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.

A summary of the average of all brine results has been included in the body of the report.

The total and drainable porosity results for 4 test pits where Shelby tube insitu samples were taken are included in the body of the report.

Other substantive exploration data

Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.

All material exploration data available at the time of writing has been reported.

Further work

The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling).

Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.

Trench tests will commence and be concluded in Q2, an auger drilling programme will be completed and the results reported in Q2.

 

 

This information is provided by RNS, the news service of the London Stock Exchange. RNS is approved by the Financial Conduct Authority to act as a Primary Information Provider in the United Kingdom. Terms and conditions relating to the use and distribution of this information may apply. For further information, please contact rns@lseg.com or visit www.rns.com.

END

Appendix 5B

Mining exploration entity and oil and gas exploration entity quarterly report

Introduced 01/07/96  Origin Appendix 8  Amended 01/07/97, 01/07/98, 30/09/01, 01/06/10, 17/12/10, 01/05/13, 01/09/16

Name of entity

Salt Lake Potash Limited

ABN

Quarter ended (“current quarter”)

98 117 085 748

30 September 2018

Consolidated statement of cash flows

Current quarter $A’000

Year to date

 (3 months)
$A’000

1.

Cash flows from operating activities

1.1

Receipts from customers

1.2

Payments for

(1,633)

(1,633)

(a)   exploration & evaluation

(b)   development

(c)   production

(d)   staff costs

(610)

(610)

(e)   administration and corporate costs

(182)

(182)

1.3

Dividends received (see note 3)

1.4

Interest received

34

34

1.5

Interest and other costs of finance paid

1.6

Income taxes paid

1.7

Research and development refunds

1.8

Other (provide details if material)
– Business Development

(224)

(224)

1.9

Net cash from / (used in) operating activities

(2,615)

(2,615)

2.

Cash flows from investing activities

(122)

(122)

2.1

Payments to acquire:

(a)   property, plant and equipment

(b)   tenements (see item 10)

(c)   investments

(d)   other non-current assets

2.2

Proceeds from the disposal of:

(a)   property, plant and equipment

(b)   tenements (see item 10)

(c)   investments

(d)   other non-current assets

2.3

Cash flows from loans to other entities

2.4

Dividends received (see note 3)

2.5

Other (provide details if material)

2.6

Net cash from / (used in) investing activities

(122)

(122)

3.

Cash flows from financing activities

3.1

Proceeds from issues of shares

3.2

Proceeds from issue of convertible notes

3.3

Proceeds from exercise of share options

3.4

Transaction costs related to issues of shares, convertible notes or options

3.5

Proceeds from borrowings

3.6

Repayment of borrowings

3.7

Transaction costs related to loans and borrowings

3.8

Dividends paid

3.9

Other (provide details if material)

3.10

Net cash from / (used in) financing activities

4.

Net increase / (decrease) in cash and cash equivalents for the period

5,709

5,709

4.1

Cash and cash equivalents at beginning of period

4.2

Net cash from / (used in) operating activities (item 1.9 above)

(2,615)

(2,615)

4.3

Net cash from / (used in) investing activities (item 2.6 above)

(122)

(122)

4.4

Net cash from / (used in) financing activities (item 3.10 above)

4.5

Effect of movement in exchange rates on cash held

4.6

Cash and cash equivalents at end of period

2,972

2,972

5.

Reconciliation of cash and cash equivalents
at the end of the quarter (as shown in the consolidated statement of cash flows) to the related items in the accounts

Current quarter
$A’000

Previous quarter
$A’000

5.1

Bank balances

1,259

1,596

5.2

Call deposits

1,713

4,113

5.3

Bank overdrafts

5.4

Other (provide details)

5.5

Cash and cash equivalents at end of quarter (should equal item 4.6 above)

2,972

5,709

6.

Payments to directors of the entity and their associates

Current quarter
$A’000

6.1

Aggregate amount of payments to these parties included in item 1.2

(127)

6.2

Aggregate amount of cash flow from loans to these parties included in item 2.3

6.3

Include below any explanation necessary to understand the transactions included in items 6.1 and 6.2

Payments include director and consulting fees, superannuation and provision of corporate, administration services, and a fully serviced office.

7.

Payments to related entities of the entity and their associates

Current quarter
$A’000

7.1

Aggregate amount of payments to these parties included in item 1.2

7.2

Aggregate amount of cash flow from loans to these parties included in item 2.3

7.3

Include below any explanation necessary to understand the transactions included in items 7.1 and 7.2

Not applicable.

8.

Financing facilities available
Add notes as necessary for an understanding of the position

Total facility amount at quarter end
$A’000

Amount drawn at quarter end
$A’000

8.1

Loan facilities

8.2

Credit standby arrangements

8.3

Other (please specify)

8.4

Include below a description of each facility above, including the lender, interest rate and whether it is secured or unsecured. If any additional facilities have been entered into or are proposed to be entered into after quarter end, include details of those facilities as well.

Not applicable

9.

Estimated cash outflows for next quarter

$A’000

9.1

Exploration and evaluation

950

9.2

Development

9.3

Production

9.4

Staff costs

500

9.5

Administration and corporate costs

150

9.6

Other (provide details if material)
– Business Development

150

9.7

Total estimated cash outflows

1,750

10.

Changes in tenements
(items 2.1(b) and 2.2(b) above)

Tenement reference and location

Nature of interest

Interest at beginning of quarter

Interest at end of quarter

10.1

Interests in mining tenements and petroleum tenements lapsed, relinquished or reduced

Refer to Appendix 1

10.2

Interests in mining tenements and petroleum tenements acquired or increased

Compliance statement

1        This statement has been prepared in accordance with accounting standards and policies which comply with Listing Rule 19.11A.

2        This statement gives a true and fair view of the matters disclosed.

Sign here:         ……………………………………………………                        Date: 31 October 2018

(Director/Company secretary)

Print name:       Clint McGhie

Notes

1.       The quarterly report provides a basis for informing the market how the entity’s activities have been financed for the past quarter and the effect on its cash position. An entity that wishes to disclose additional information is encouraged to do so, in a note or notes included in or attached to this report.

2.       If this quarterly report has been prepared in accordance with Australian Accounting Standards, the definitions in, and provisions of, AASB 6: Exploration for and Evaluation of Mineral Resources and AASB 107: Statement of Cash Flows apply to this report. If this quarterly report has been prepared in accordance with other accounting standards agreed by ASX pursuant to Listing Rule 19.11A, the corresponding equivalent standards apply to this report.

3.       Dividends received may be classified either as cash flows from operating activities or cash flows from investing activities, depending on the accounting policy of the entity.

This information is provided by RNS, the news service of the London Stock Exchange. RNS is approved by the Financial Conduct Authority to act as a Primary Information Provider in the United Kingdom. Terms and conditions relating to the use and distribution of this information may apply. For further information, please contact rns@lseg.com or visit www.rns.com.

END

Salt Lake Potash (SO4) Mines Department Approval to Construct Williamson Ponds at Lake Way

Salt Lake Potash (the Company or SLP) is pleased to announce that the Company has now received approval from the Department of Mines, Industry Regulation and Safety (DMIRS) for a pond system to dewater the Williamson Pit at Lake Way.

DMIRS has given approval to construct ponds totalling up to 133Ha, as well as ancillary infrastructure and a trench to provide conditioning brine to manage the chemistry of the brine extracted from the Williamson Pit.

The Williamson Pit at Lake Way has a JORC Measured Resource of 1.26Gl of brine at an average SOP grade of 25kg/m3, easily the highest grade SOP brine resource in Australia. Pursuant to the Company’s MOU with Blackham Resources Limited, the owner of the Williamson Pit, SLP will dewater the Pit ahead of Blackham re-entering the Pit for mining.

The Williamson Ponds will be the first operational scale SOP evaporation ponds built on a salt lake in Australia – an important part of the staged de-risking and development at Lake Way and across the Goldfields Salt Lakes Project.

Construction of the Williamson ponds will proceed upon:

  • completion of final engineering designs and contractor engagements;
  • completion of formal documents with Blackham to supersede the MOU (already substantially advanced); and
  • satisfaction of aboriginal heritage requirements. 

Salt Lake CEO, Matt Syme saidThis approval from DMIRS is an important milestone in our plans for staged development at Lake Way and across the Goldfields Salt Lakes Project more broadly. Our objective is to build the most sustainable and rewarding fertiliser project in the world and low cost, environmentally friendly on-lake ponds are an important part of our business model. Construction and filling of the Williamson Ponds will provide very strong validation of that model“.

 

For further information please visit www.saltlakepotash.com.au or contact:

Matt Syme/Clint McGhie

Salt Lake Potash Limited

Tel: +61 8 9322 6322

Jo Battershill

Salt Lake Potash Limited

Tel: +44 (0) 20 7478 3900

Colin Aaronson/Richard Tonthat/Ben Roberts

Grant Thornton UK LLP (Nominated Adviser)

Tel: +44 (0) 20 7383 5100

Derrick Lee/Beth McKiernan

Cenkos Securities plc (Joint Broker)

Tel: +44 (0) 131 220 6939

Jerry Keen/Toby Gibbs

 

Shore Capital (Joint broker)

Tel: +44 (0) 20 7468 7967

 

 

Competent Person Statement

The information in this Announcement that relates to Mineral Resources is extracted from the report entitled ‘Scoping Study for Low Capex, High Margin Demonstration Plant at Lake Way’ dated 31 July 2018. This announcement is available to view on www.saltlakepotash.com.au. The information in the original ASX Announcement that related to Mineral Resources was based on, and fairly represents, information compiled by Mr Ben Jeuken, who is a member Australian Institute of Mining and Metallurgy and a member of the International Association of Hydrogeologists. Mr Jeuken is employed by Groundwater Science Pty Ltd, an independent consulting company. Mr Jeuken has sufficient experience, which is relevant to the style of mineralisation and type of deposit under consideration and to the activity, which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the ‘Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves’. Salt Lake Potash Limited confirms that it is not aware of any new information or data that materially affects the information included in the original market announcement and, in the case of estimates of Mineral Resources, that all material assumptions and technical parameters underpinning the estimates in the relevant market announcement continue to apply and have not materially changed. Salt Lake Potash Limited confirms that the form and context in which the Competent Person’s findings are presented have not been materially modified from the original market announcement.

I would like to receive Brand Communications updates and news...
Free Stock Updates & News
I agree to have my personal information transfered to MailChimp ( more information )
Join over 3.000 visitors who are receiving our newsletter and learn how to optimize your blog for search engines, find free traffic, and monetize your website.
We hate spam. Your email address will not be sold or shared with anyone else.